Release on 09.11.24
This commit is contained in:
13
comfy/checkpoint_pickle.py
Normal file
13
comfy/checkpoint_pickle.py
Normal file
@@ -0,0 +1,13 @@
|
||||
import pickle
|
||||
|
||||
load = pickle.load
|
||||
|
||||
class Empty:
|
||||
pass
|
||||
|
||||
class Unpickler(pickle.Unpickler):
|
||||
def find_class(self, module, name):
|
||||
#TODO: safe unpickle
|
||||
if module.startswith("pytorch_lightning"):
|
||||
return Empty
|
||||
return super().find_class(module, name)
|
||||
437
comfy/cldm/cldm.py
Normal file
437
comfy/cldm/cldm.py
Normal file
@@ -0,0 +1,437 @@
|
||||
#taken from: https://github.com/lllyasviel/ControlNet
|
||||
#and modified
|
||||
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
from ..ldm.modules.diffusionmodules.util import (
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from ..ldm.modules.attention import SpatialTransformer
|
||||
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
||||
from ..ldm.util import exists
|
||||
from .control_types import UNION_CONTROLNET_TYPES
|
||||
from collections import OrderedDict
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
class OptimizedAttention(nn.Module):
|
||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.heads = nhead
|
||||
self.c = c
|
||||
|
||||
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
||||
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.in_proj(x)
|
||||
q, k, v = x.split(self.c, dim=2)
|
||||
out = optimized_attention(q, k, v, self.heads)
|
||||
return self.out_proj(out)
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
class ResBlockUnionControlnet(nn.Module):
|
||||
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
||||
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.mlp = nn.Sequential(
|
||||
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
||||
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
||||
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
||||
|
||||
def attention(self, x: torch.Tensor):
|
||||
return self.attn(x)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attention(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
class ControlledUnetModel(UNetModel):
|
||||
#implemented in the ldm unet
|
||||
pass
|
||||
|
||||
class ControlNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
hint_channels,
|
||||
num_res_blocks,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
dtype=torch.float32,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
attn_precision=None,
|
||||
union_controlnet_num_control_type=None,
|
||||
device=None,
|
||||
operations=comfy.ops.disable_weight_init,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
self.dims = dims
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
|
||||
transformer_depth = transformer_depth[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = dtype
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
]
|
||||
)
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
||||
|
||||
self.input_hint_block = TimestepEmbedSequential(
|
||||
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
mid_block = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
||||
self._feature_size += ch
|
||||
|
||||
if union_controlnet_num_control_type is not None:
|
||||
self.num_control_type = union_controlnet_num_control_type
|
||||
num_trans_channel = 320
|
||||
num_trans_head = 8
|
||||
num_trans_layer = 1
|
||||
num_proj_channel = 320
|
||||
# task_scale_factor = num_trans_channel ** 0.5
|
||||
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
||||
|
||||
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
||||
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
||||
#-----------------------------------------------------------------------------------------------------
|
||||
|
||||
control_add_embed_dim = 256
|
||||
class ControlAddEmbedding(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.num_control_type = num_control_type
|
||||
self.in_dim = in_dim
|
||||
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
||||
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
||||
def forward(self, control_type, dtype, device):
|
||||
c_type = torch.zeros((self.num_control_type,), device=device)
|
||||
c_type[control_type] = 1.0
|
||||
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
||||
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
||||
|
||||
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.task_embedding = None
|
||||
self.control_add_embedding = None
|
||||
|
||||
def union_controlnet_merge(self, hint, control_type, emb, context):
|
||||
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
||||
inputs = []
|
||||
condition_list = []
|
||||
|
||||
for idx in range(min(1, len(control_type))):
|
||||
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
||||
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
||||
if idx < len(control_type):
|
||||
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
||||
|
||||
inputs.append(feat_seq.unsqueeze(1))
|
||||
condition_list.append(controlnet_cond)
|
||||
|
||||
x = torch.cat(inputs, dim=1)
|
||||
x = self.transformer_layes(x)
|
||||
controlnet_cond_fuser = None
|
||||
for idx in range(len(control_type)):
|
||||
alpha = self.spatial_ch_projs(x[:, idx])
|
||||
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
||||
o = condition_list[idx] + alpha
|
||||
if controlnet_cond_fuser is None:
|
||||
controlnet_cond_fuser = o
|
||||
else:
|
||||
controlnet_cond_fuser += o
|
||||
return controlnet_cond_fuser
|
||||
|
||||
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
||||
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
guided_hint = None
|
||||
if self.control_add_embedding is not None: #Union Controlnet
|
||||
control_type = kwargs.get("control_type", [])
|
||||
|
||||
if any([c >= self.num_control_type for c in control_type]):
|
||||
max_type = max(control_type)
|
||||
max_type_name = {
|
||||
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
||||
}[max_type]
|
||||
raise ValueError(
|
||||
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
||||
f"({self.num_control_type}) supported.\n" +
|
||||
"Please consider using the ProMax ControlNet Union model.\n" +
|
||||
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
||||
)
|
||||
|
||||
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
||||
if len(control_type) > 0:
|
||||
if len(hint.shape) < 5:
|
||||
hint = hint.unsqueeze(dim=0)
|
||||
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
||||
|
||||
if guided_hint is None:
|
||||
guided_hint = self.input_hint_block(hint, emb, context)
|
||||
|
||||
out_output = []
|
||||
out_middle = []
|
||||
|
||||
hs = []
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x
|
||||
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
||||
if guided_hint is not None:
|
||||
h = module(h, emb, context)
|
||||
h += guided_hint
|
||||
guided_hint = None
|
||||
else:
|
||||
h = module(h, emb, context)
|
||||
out_output.append(zero_conv(h, emb, context))
|
||||
|
||||
h = self.middle_block(h, emb, context)
|
||||
out_middle.append(self.middle_block_out(h, emb, context))
|
||||
|
||||
return {"middle": out_middle, "output": out_output}
|
||||
|
||||
10
comfy/cldm/control_types.py
Normal file
10
comfy/cldm/control_types.py
Normal file
@@ -0,0 +1,10 @@
|
||||
UNION_CONTROLNET_TYPES = {
|
||||
"openpose": 0,
|
||||
"depth": 1,
|
||||
"hed/pidi/scribble/ted": 2,
|
||||
"canny/lineart/anime_lineart/mlsd": 3,
|
||||
"normal": 4,
|
||||
"segment": 5,
|
||||
"tile": 6,
|
||||
"repaint": 7,
|
||||
}
|
||||
81
comfy/cldm/mmdit.py
Normal file
81
comfy/cldm/mmdit.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import torch
|
||||
from typing import Dict, Optional
|
||||
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||
|
||||
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
||||
def __init__(
|
||||
self,
|
||||
num_blocks = None,
|
||||
control_latent_channels = None,
|
||||
dtype = None,
|
||||
device = None,
|
||||
operations = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
||||
# controlnet_blocks
|
||||
self.controlnet_blocks = torch.nn.ModuleList([])
|
||||
for _ in range(len(self.joint_blocks)):
|
||||
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
||||
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
|
||||
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
||||
None,
|
||||
self.patch_size,
|
||||
control_latent_channels,
|
||||
self.hidden_size,
|
||||
bias=True,
|
||||
strict_img_size=False,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
hint = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
#weird sd3 controlnet specific stuff
|
||||
y = torch.zeros_like(y)
|
||||
|
||||
if self.context_processor is not None:
|
||||
context = self.context_processor(context)
|
||||
|
||||
hw = x.shape[-2:]
|
||||
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
||||
x += self.pos_embed_input(hint)
|
||||
|
||||
c = self.t_embedder(timesteps, dtype=x.dtype)
|
||||
if y is not None and self.y_embedder is not None:
|
||||
y = self.y_embedder(y)
|
||||
c = c + y
|
||||
|
||||
if context is not None:
|
||||
context = self.context_embedder(context)
|
||||
|
||||
output = []
|
||||
|
||||
blocks = len(self.joint_blocks)
|
||||
for i in range(blocks):
|
||||
context, x = self.joint_blocks[i](
|
||||
context,
|
||||
x,
|
||||
c=c,
|
||||
use_checkpoint=self.use_checkpoint,
|
||||
)
|
||||
|
||||
out = self.controlnet_blocks[i](x)
|
||||
count = self.depth // blocks
|
||||
if i == blocks - 1:
|
||||
count -= 1
|
||||
for j in range(count):
|
||||
output.append(out)
|
||||
|
||||
return {"output": output}
|
||||
185
comfy/cli_args.py
Normal file
185
comfy/cli_args.py
Normal file
@@ -0,0 +1,185 @@
|
||||
import argparse
|
||||
import enum
|
||||
import os
|
||||
from typing import Optional
|
||||
import comfy.options
|
||||
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
Argparse action for handling Enums
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
# Pop off the type value
|
||||
enum_type = kwargs.pop("type", None)
|
||||
|
||||
# Ensure an Enum subclass is provided
|
||||
if enum_type is None:
|
||||
raise ValueError("type must be assigned an Enum when using EnumAction")
|
||||
if not issubclass(enum_type, enum.Enum):
|
||||
raise TypeError("type must be an Enum when using EnumAction")
|
||||
|
||||
# Generate choices from the Enum
|
||||
choices = tuple(e.value for e in enum_type)
|
||||
kwargs.setdefault("choices", choices)
|
||||
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
||||
|
||||
super(EnumAction, self).__init__(**kwargs)
|
||||
|
||||
self._enum = enum_type
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
# Convert value back into an Enum
|
||||
value = self._enum(values)
|
||||
setattr(namespace, self.dest, value)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
||||
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
||||
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
||||
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
||||
|
||||
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
||||
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
||||
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
||||
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
cm_group = parser.add_mutually_exclusive_group()
|
||||
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
||||
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
||||
|
||||
|
||||
fp_group = parser.add_mutually_exclusive_group()
|
||||
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
||||
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
||||
|
||||
fpunet_group = parser.add_mutually_exclusive_group()
|
||||
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
||||
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
||||
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
||||
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
||||
|
||||
fpvae_group = parser.add_mutually_exclusive_group()
|
||||
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
||||
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
||||
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
||||
|
||||
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
||||
|
||||
fpte_group = parser.add_mutually_exclusive_group()
|
||||
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
||||
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
||||
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
||||
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
||||
|
||||
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
||||
|
||||
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
||||
|
||||
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
||||
|
||||
class LatentPreviewMethod(enum.Enum):
|
||||
NoPreviews = "none"
|
||||
Auto = "auto"
|
||||
Latent2RGB = "latent2rgb"
|
||||
TAESD = "taesd"
|
||||
|
||||
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||
|
||||
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
||||
|
||||
cache_group = parser.add_mutually_exclusive_group()
|
||||
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
||||
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
upcast = parser.add_mutually_exclusive_group()
|
||||
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
||||
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
||||
|
||||
|
||||
vram_group = parser.add_mutually_exclusive_group()
|
||||
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
||||
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
||||
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
||||
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
||||
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reverved depending on your OS.")
|
||||
|
||||
|
||||
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
||||
parser.add_argument("--fast", action="store_true", help="Enable some untested and potentially quality deteriorating optimizations.")
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
||||
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
||||
|
||||
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
||||
|
||||
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
||||
|
||||
# The default built-in provider hosted under web/
|
||||
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-version",
|
||||
type=str,
|
||||
default=DEFAULT_VERSION_STRING,
|
||||
help="""
|
||||
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
||||
download available frontend implementations from GitHub releases.
|
||||
|
||||
The version string should be in the format of:
|
||||
[repoOwner]/[repoName]@[version]
|
||||
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
||||
""",
|
||||
)
|
||||
|
||||
def is_valid_directory(path: Optional[str]) -> Optional[str]:
|
||||
"""Validate if the given path is a directory."""
|
||||
if path is None:
|
||||
return None
|
||||
|
||||
if not os.path.isdir(path):
|
||||
raise argparse.ArgumentTypeError(f"{path} is not a valid directory.")
|
||||
return path
|
||||
|
||||
parser.add_argument(
|
||||
"--front-end-root",
|
||||
type=is_valid_directory,
|
||||
default=None,
|
||||
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
||||
)
|
||||
|
||||
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
else:
|
||||
args = parser.parse_args([])
|
||||
|
||||
if args.windows_standalone_build:
|
||||
args.auto_launch = True
|
||||
|
||||
if args.disable_auto_launch:
|
||||
args.auto_launch = False
|
||||
23
comfy/clip_config_bigg.json
Normal file
23
comfy/clip_config_bigg.json
Normal file
@@ -0,0 +1,23 @@
|
||||
{
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 20,
|
||||
"num_hidden_layers": 32,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float32",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
196
comfy/clip_model.py
Normal file
196
comfy/clip_model.py
Normal file
@@ -0,0 +1,196 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
self.heads = heads
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
q = self.q_proj(x)
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return self.out_proj(out)
|
||||
|
||||
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
||||
"gelu": torch.nn.functional.gelu,
|
||||
}
|
||||
|
||||
class CLIPMLP(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
||||
self.activation = ACTIVATIONS[activation]
|
||||
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.activation(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
class CLIPLayer(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
||||
x += self.mlp(self.layer_norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class CLIPEncoder(torch.nn.Module):
|
||||
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layers):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, dtype=torch.float32):
|
||||
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
||||
|
||||
|
||||
class CLIPTextModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
num_positions = config_dict["max_position_embeddings"]
|
||||
self.eos_token_id = config_dict["eos_token_id"]
|
||||
|
||||
super().__init__()
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
||||
x = self.embeddings(input_tokens, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
||||
|
||||
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
||||
if mask is not None:
|
||||
mask += causal_mask
|
||||
else:
|
||||
mask = causal_mask
|
||||
|
||||
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
||||
x = self.final_layer_norm(x)
|
||||
if i is not None and final_layer_norm_intermediate:
|
||||
i = self.final_layer_norm(i)
|
||||
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
||||
return x, i, pooled_output
|
||||
|
||||
class CLIPTextModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.text_model.embeddings.token_embedding
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.text_model.embeddings.token_embedding = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
x = self.text_model(*args, **kwargs)
|
||||
out = self.text_projection(x[2])
|
||||
return (x[0], x[1], out, x[2])
|
||||
|
||||
|
||||
class CLIPVisionEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
||||
|
||||
self.patch_embedding = operations.Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=False,
|
||||
dtype=dtype,
|
||||
device=device
|
||||
)
|
||||
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
num_positions = num_patches + 1
|
||||
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values):
|
||||
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
||||
return torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
||||
|
||||
|
||||
class CLIPVision(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=dtype, device=device, operations=operations)
|
||||
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.post_layernorm = operations.LayerNorm(embed_dim)
|
||||
|
||||
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
||||
x = self.embeddings(pixel_values)
|
||||
x = self.pre_layrnorm(x)
|
||||
#TODO: attention_mask?
|
||||
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
||||
pooled_output = self.post_layernorm(x[:, 0, :])
|
||||
return x, i, pooled_output
|
||||
|
||||
class CLIPVisionModelProjection(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
||||
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
x = self.vision_model(*args, **kwargs)
|
||||
out = self.visual_projection(x[2])
|
||||
return (x[0], x[1], out)
|
||||
120
comfy/clip_vision.py
Normal file
120
comfy/clip_vision.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
||||
import os
|
||||
import torch
|
||||
import json
|
||||
import logging
|
||||
|
||||
import comfy.ops
|
||||
import comfy.model_patcher
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
import comfy.clip_model
|
||||
|
||||
class Output:
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
def __setitem__(self, key, item):
|
||||
setattr(self, key, item)
|
||||
|
||||
def clip_preprocess(image, size=224):
|
||||
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size)//2
|
||||
w = (image.shape[3] - size)//2
|
||||
image = image[:,:,h:h+size,w:w+size]
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
with open(json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model.eval()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def encode_image(self, image):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
||||
|
||||
outputs = Output()
|
||||
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
||||
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
||||
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
||||
return outputs
|
||||
|
||||
def convert_to_transformers(sd, prefix):
|
||||
sd_k = sd.keys()
|
||||
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
||||
keys_to_replace = {
|
||||
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
||||
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
||||
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
||||
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
||||
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
||||
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
||||
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
||||
}
|
||||
|
||||
for x in keys_to_replace:
|
||||
if x in sd_k:
|
||||
sd[keys_to_replace[x]] = sd.pop(x)
|
||||
|
||||
if "{}proj".format(prefix) in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
||||
|
||||
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
||||
else:
|
||||
replace_prefix = {prefix: ""}
|
||||
sd = state_dict_prefix_replace(sd, replace_prefix)
|
||||
return sd
|
||||
|
||||
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
if convert_keys:
|
||||
sd = convert_to_transformers(sd, prefix)
|
||||
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
if sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
clip = ClipVisionModel(json_config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
logging.warning("missing clip vision: {}".format(m))
|
||||
u = set(u)
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k not in u:
|
||||
sd.pop(k)
|
||||
return clip
|
||||
|
||||
def load(ckpt_path):
|
||||
sd = load_torch_file(ckpt_path)
|
||||
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
||||
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
||||
else:
|
||||
return load_clipvision_from_sd(sd)
|
||||
18
comfy/clip_vision_config_g.json
Normal file
18
comfy/clip_vision_config_g.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1664,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 8192,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 48,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
18
comfy/clip_vision_config_h.json
Normal file
18
comfy/clip_vision_config_h.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 32,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1024,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
18
comfy/clip_vision_config_vitl.json
Normal file
18
comfy/clip_vision_config_vitl.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
18
comfy/clip_vision_config_vitl_336.json
Normal file
18
comfy/clip_vision_config_vitl_336.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"image_size": 336,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-5,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
32
comfy/comfy_types.py
Normal file
32
comfy/comfy_types.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import torch
|
||||
from typing import Callable, Protocol, TypedDict, Optional, List
|
||||
|
||||
|
||||
class UnetApplyFunction(Protocol):
|
||||
"""Function signature protocol on comfy.model_base.BaseModel.apply_model"""
|
||||
|
||||
def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
pass
|
||||
|
||||
|
||||
class UnetApplyConds(TypedDict):
|
||||
"""Optional conditions for unet apply function."""
|
||||
|
||||
c_concat: Optional[torch.Tensor]
|
||||
c_crossattn: Optional[torch.Tensor]
|
||||
control: Optional[torch.Tensor]
|
||||
transformer_options: Optional[dict]
|
||||
|
||||
|
||||
class UnetParams(TypedDict):
|
||||
# Tensor of shape [B, C, H, W]
|
||||
input: torch.Tensor
|
||||
# Tensor of shape [B]
|
||||
timestep: torch.Tensor
|
||||
c: UnetApplyConds
|
||||
# List of [0, 1], [0], [1], ...
|
||||
# 0 means conditional, 1 means conditional unconditional
|
||||
cond_or_uncond: List[int]
|
||||
|
||||
|
||||
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
|
||||
83
comfy/conds.py
Normal file
83
comfy/conds.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import torch
|
||||
import math
|
||||
import comfy.utils
|
||||
|
||||
|
||||
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
||||
return abs(a*b) // math.gcd(a, b)
|
||||
|
||||
class CONDRegular:
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def _copy_with(self, cond):
|
||||
return self.__class__(cond)
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond.shape != other.cond.shape:
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
conds = [self.cond]
|
||||
for x in others:
|
||||
conds.append(x.cond)
|
||||
return torch.cat(conds)
|
||||
|
||||
class CONDNoiseShape(CONDRegular):
|
||||
def process_cond(self, batch_size, device, area, **kwargs):
|
||||
data = self.cond
|
||||
if area is not None:
|
||||
dims = len(area) // 2
|
||||
for i in range(dims):
|
||||
data = data.narrow(i + 2, area[i + dims], area[i])
|
||||
|
||||
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
||||
|
||||
|
||||
class CONDCrossAttn(CONDRegular):
|
||||
def can_concat(self, other):
|
||||
s1 = self.cond.shape
|
||||
s2 = other.cond.shape
|
||||
if s1 != s2:
|
||||
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
||||
return False
|
||||
|
||||
mult_min = lcm(s1[1], s2[1])
|
||||
diff = mult_min // min(s1[1], s2[1])
|
||||
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
conds = [self.cond]
|
||||
crossattn_max_len = self.cond.shape[1]
|
||||
for x in others:
|
||||
c = x.cond
|
||||
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
||||
conds.append(c)
|
||||
|
||||
out = []
|
||||
for c in conds:
|
||||
if c.shape[1] < crossattn_max_len:
|
||||
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
||||
out.append(c)
|
||||
return torch.cat(out)
|
||||
|
||||
class CONDConstant(CONDRegular):
|
||||
def __init__(self, cond):
|
||||
self.cond = cond
|
||||
|
||||
def process_cond(self, batch_size, device, **kwargs):
|
||||
return self._copy_with(self.cond)
|
||||
|
||||
def can_concat(self, other):
|
||||
if self.cond != other.cond:
|
||||
return False
|
||||
return True
|
||||
|
||||
def concat(self, others):
|
||||
return self.cond
|
||||
766
comfy/controlnet.py
Normal file
766
comfy/controlnet.py
Normal file
@@ -0,0 +1,766 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
from enum import Enum
|
||||
import math
|
||||
import os
|
||||
import logging
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
import comfy.model_patcher
|
||||
import comfy.ops
|
||||
import comfy.latent_formats
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
per_batch = target_batch_size // batched_number
|
||||
tensor = tensor[:per_batch]
|
||||
|
||||
if per_batch > tensor.shape[0]:
|
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
||||
|
||||
current_batch_size = tensor.shape[0]
|
||||
if current_batch_size == target_batch_size:
|
||||
return tensor
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class StrengthType(Enum):
|
||||
CONSTANT = 1
|
||||
LINEAR_UP = 2
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (0.0, 1.0)
|
||||
self.latent_format = None
|
||||
self.vae = None
|
||||
self.global_average_pooling = False
|
||||
self.timestep_range = None
|
||||
self.compression_ratio = 8
|
||||
self.upscale_algorithm = 'nearest-exact'
|
||||
self.extra_args = {}
|
||||
self.previous_controlnet = None
|
||||
self.extra_conds = []
|
||||
self.strength_type = StrengthType.CONSTANT
|
||||
self.concat_mask = False
|
||||
self.extra_concat_orig = []
|
||||
self.extra_concat = None
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
if self.latent_format is not None:
|
||||
if vae is None:
|
||||
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
|
||||
self.vae = vae
|
||||
self.extra_concat_orig = extra_concat.copy()
|
||||
if self.concat_mask and len(self.extra_concat_orig) == 0:
|
||||
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
|
||||
self.cond_hint = None
|
||||
self.extra_concat = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
c.global_average_pooling = self.global_average_pooling
|
||||
c.compression_ratio = self.compression_ratio
|
||||
c.upscale_algorithm = self.upscale_algorithm
|
||||
c.latent_format = self.latent_format
|
||||
c.extra_args = self.extra_args.copy()
|
||||
c.vae = self.vae
|
||||
c.extra_conds = self.extra_conds.copy()
|
||||
c.strength_type = self.strength_type
|
||||
c.concat_mask = self.concat_mask
|
||||
c.extra_concat_orig = self.extra_concat_orig.copy()
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
return self.previous_controlnet.inference_memory_requirements(dtype)
|
||||
return 0
|
||||
|
||||
def control_merge(self, control, control_prev, output_dtype):
|
||||
out = {'input':[], 'middle':[], 'output': []}
|
||||
|
||||
for key in control:
|
||||
control_output = control[key]
|
||||
applied_to = set()
|
||||
for i in range(len(control_output)):
|
||||
x = control_output[i]
|
||||
if x is not None:
|
||||
if self.global_average_pooling:
|
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
||||
|
||||
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
|
||||
applied_to.add(x)
|
||||
if self.strength_type == StrengthType.CONSTANT:
|
||||
x *= self.strength
|
||||
elif self.strength_type == StrengthType.LINEAR_UP:
|
||||
x *= (self.strength ** float(len(control_output) - i))
|
||||
|
||||
if output_dtype is not None and x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
|
||||
if control_prev is not None:
|
||||
for x in ['input', 'middle', 'output']:
|
||||
o = out[x]
|
||||
for i in range(len(control_prev[x])):
|
||||
prev_val = control_prev[x][i]
|
||||
if i >= len(o):
|
||||
o.append(prev_val)
|
||||
elif prev_val is not None:
|
||||
if o[i] is None:
|
||||
o[i] = prev_val
|
||||
else:
|
||||
if o[i].shape[0] < prev_val.shape[0]:
|
||||
o[i] = prev_val + o[i]
|
||||
else:
|
||||
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
|
||||
return out
|
||||
|
||||
def set_extra_arg(self, argument, value=None):
|
||||
self.extra_args[argument] = value
|
||||
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False):
|
||||
super().__init__()
|
||||
self.control_model = control_model
|
||||
self.load_device = load_device
|
||||
if control_model is not None:
|
||||
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
||||
|
||||
self.compression_ratio = compression_ratio
|
||||
self.global_average_pooling = global_average_pooling
|
||||
self.model_sampling_current = None
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
self.latent_format = latent_format
|
||||
self.extra_conds += extra_conds
|
||||
self.strength_type = strength_type
|
||||
self.concat_mask = concat_mask
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return None
|
||||
|
||||
dtype = self.control_model.dtype
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
compression_ratio = self.compression_ratio
|
||||
if self.vae is not None:
|
||||
compression_ratio *= self.vae.downscale_ratio
|
||||
else:
|
||||
if self.latent_format is not None:
|
||||
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
|
||||
if self.vae is not None:
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
if self.latent_format is not None:
|
||||
self.cond_hint = self.latent_format.process_in(self.cond_hint)
|
||||
if len(self.extra_concat_orig) > 0:
|
||||
to_concat = []
|
||||
for c in self.extra_concat_orig:
|
||||
c = c.to(self.cond_hint.device)
|
||||
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
|
||||
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
|
||||
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
|
||||
|
||||
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
||||
extra = self.extra_args.copy()
|
||||
for c in self.extra_conds:
|
||||
temp = cond.get(c, None)
|
||||
if temp is not None:
|
||||
extra[c] = temp.to(dtype)
|
||||
|
||||
timestep = self.model_sampling_current.timestep(t)
|
||||
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
||||
|
||||
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
|
||||
return self.control_merge(control, control_prev, output_dtype=None)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
c.control_model = self.control_model
|
||||
c.control_model_wrapped = self.control_model_wrapped
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model_wrapped)
|
||||
return out
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
self.model_sampling_current = model.model_sampling
|
||||
|
||||
def cleanup(self):
|
||||
self.model_sampling_current = None
|
||||
super().cleanup()
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode='zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.transposed = False
|
||||
self.output_padding = 0
|
||||
self.groups = groups
|
||||
self.padding_mode = padding_mode
|
||||
|
||||
self.weight = None
|
||||
self.bias = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
|
||||
ControlBase.__init__(self)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
self.extra_conds += ["y"]
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
controlnet_config = model.model_config.unet_config.copy()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
self.manual_cast_dtype = model.manual_cast_dtype
|
||||
dtype = model.get_dtype()
|
||||
if self.manual_cast_dtype is None:
|
||||
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
||||
pass
|
||||
else:
|
||||
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
||||
pass
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
controlnet_config["operations"] = control_lora_ops
|
||||
controlnet_config["dtype"] = dtype
|
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = sd[k]
|
||||
try:
|
||||
comfy.utils.set_attr_param(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
del self.control_model
|
||||
self.control_model = None
|
||||
super().cleanup()
|
||||
|
||||
def get_models(self):
|
||||
out = ControlBase.get_models(self)
|
||||
return out
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def controlnet_config(sd, model_options={}):
|
||||
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
|
||||
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
offload_device = comfy.model_management.unet_offload_device()
|
||||
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
|
||||
|
||||
def controlnet_load_state_dict(control_model, sd):
|
||||
missing, unexpected = control_model.load_state_dict(sd, strict=False)
|
||||
|
||||
if len(missing) > 0:
|
||||
logging.warning("missing controlnet keys: {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
return control_model
|
||||
|
||||
def load_controlnet_mmdit(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
concat_mask = False
|
||||
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
|
||||
if control_latent_channels == 17: #inpaint controlnet
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.SD3()
|
||||
latent_format.shift_factor = 0 #SD3 controlnet weirdness
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
|
||||
|
||||
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
|
||||
control_model = controlnet_load_state_dict(control_model, controlnet_data)
|
||||
|
||||
latent_format = comfy.latent_formats.SDXL()
|
||||
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_instantx(sd, model_options={}):
|
||||
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
|
||||
for k in sd:
|
||||
new_sd[k] = sd[k]
|
||||
|
||||
num_union_modes = 0
|
||||
union_cnet = "controlnet_mode_embedder.weight"
|
||||
if union_cnet in new_sd:
|
||||
num_union_modes = new_sd[union_cnet].shape[0]
|
||||
|
||||
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
|
||||
concat_mask = False
|
||||
if control_latent_channels == 17:
|
||||
concat_mask = True
|
||||
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, new_sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Flux()
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
|
||||
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
controlnet_data = state_dict
|
||||
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
||||
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
|
||||
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data, model_options=model_options)
|
||||
|
||||
controlnet_config = None
|
||||
supported_inference_dtypes = None
|
||||
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
||||
k_out = "zero_convs.{}.0{}".format(count, s)
|
||||
if k_in not in controlnet_data:
|
||||
loop = False
|
||||
break
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
if count == 0:
|
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
||||
else:
|
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
||||
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
||||
if k_in not in controlnet_data:
|
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
||||
loop = False
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in controlnet_data:
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
|
||||
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
|
||||
for k in list(controlnet_data.keys()):
|
||||
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
|
||||
new_sd[new_k] = controlnet_data.pop(k)
|
||||
|
||||
leftover_keys = controlnet_data.keys()
|
||||
if len(leftover_keys) > 0:
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data:
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
|
||||
elif "pos_embed_input.proj.weight" in controlnet_data:
|
||||
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data, model_options=model_options)
|
||||
if net is None:
|
||||
logging.error("error could not detect control model type.")
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
||||
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
|
||||
controlnet_config = model_config.unet_config
|
||||
|
||||
unet_dtype = model_options.get("dtype", None)
|
||||
if unet_dtype is None:
|
||||
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
|
||||
|
||||
if supported_inference_dtypes is None:
|
||||
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
|
||||
|
||||
if weight_dtype is not None:
|
||||
supported_inference_dtypes.append(weight_dtype)
|
||||
|
||||
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)
|
||||
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
|
||||
|
||||
controlnet_config["operations"] = operations
|
||||
controlnet_config["dtype"] = unet_dtype
|
||||
controlnet_config["device"] = comfy.model_management.unet_offload_device()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
else:
|
||||
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
|
||||
if len(missing) > 0:
|
||||
logging.warning("missing controlnet keys: {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("unexpected controlnet keys: {}".format(unexpected))
|
||||
|
||||
global_average_pooling = model_options.get("global_average_pooling", False)
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
def load_controlnet(ckpt_path, model=None, model_options={}):
|
||||
if "global_average_pooling" not in model_options:
|
||||
filename = os.path.splitext(ckpt_path)[0]
|
||||
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
||||
model_options["global_average_pooling"] = True
|
||||
|
||||
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
|
||||
if cnet is None:
|
||||
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
|
||||
return cnet
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
||||
super().__init__()
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
self.compression_ratio = compression_ratio
|
||||
self.upscale_algorithm = upscale_algorithm
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
|
||||
def scale_image_to(self, width, height):
|
||||
unshuffle_amount = self.t2i_model.unshuffle_amount
|
||||
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return None
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.control_input is None:
|
||||
self.t2i_model.to(x_noisy.dtype)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
||||
self.t2i_model.cpu()
|
||||
|
||||
control_input = {}
|
||||
for k in self.control_input:
|
||||
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
|
||||
|
||||
return self.control_merge(control_input, control_prev, x_noisy.dtype)
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
|
||||
compression_ratio = 8
|
||||
upscale_algorithm = 'nearest-exact'
|
||||
|
||||
if 'adapter' in t2i_data:
|
||||
t2i_data = t2i_data['adapter']
|
||||
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
||||
prefix_replace = {}
|
||||
for i in range(4):
|
||||
for j in range(2):
|
||||
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
||||
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
||||
prefix_replace["adapter."] = ""
|
||||
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
keys = t2i_data.keys()
|
||||
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
xl = False
|
||||
if cin == 256 or cin == 768:
|
||||
xl = True
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
elif "backbone.0.0.weight" in keys:
|
||||
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
||||
compression_ratio = 32
|
||||
upscale_algorithm = 'bilinear'
|
||||
elif "backbone.10.blocks.0.weight" in keys:
|
||||
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
||||
compression_ratio = 1
|
||||
upscale_algorithm = 'nearest-exact'
|
||||
else:
|
||||
return None
|
||||
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
if len(missing) > 0:
|
||||
logging.warning("t2i missing {}".format(missing))
|
||||
|
||||
if len(unexpected) > 0:
|
||||
logging.debug("t2i unexpected {}".format(unexpected))
|
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
||||
281
comfy/diffusers_convert.py
Normal file
281
comfy/diffusers_convert.py
Normal file
@@ -0,0 +1,281 @@
|
||||
import re
|
||||
import torch
|
||||
import logging
|
||||
|
||||
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
||||
|
||||
# =================#
|
||||
# UNet Conversion #
|
||||
# =================#
|
||||
|
||||
unet_conversion_map = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
||||
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
||||
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
||||
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
||||
("input_blocks.0.0.weight", "conv_in.weight"),
|
||||
("input_blocks.0.0.bias", "conv_in.bias"),
|
||||
("out.0.weight", "conv_norm_out.weight"),
|
||||
("out.0.bias", "conv_norm_out.bias"),
|
||||
("out.2.weight", "conv_out.weight"),
|
||||
("out.2.bias", "conv_out.bias"),
|
||||
]
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0", "norm1"),
|
||||
("in_layers.2", "conv1"),
|
||||
("out_layers.0", "norm2"),
|
||||
("out_layers.3", "conv2"),
|
||||
("emb_layers.1", "time_emb_proj"),
|
||||
("skip_connection", "conv_shortcut"),
|
||||
]
|
||||
|
||||
unet_conversion_map_layer = []
|
||||
# hardcoded number of downblocks and resnets/attentions...
|
||||
# would need smarter logic for other networks.
|
||||
for i in range(4):
|
||||
# loop over downblocks/upblocks
|
||||
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
if i > 0:
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
|
||||
def convert_unet_state_dict(unet_state_dict):
|
||||
# buyer beware: this is a *brittle* function,
|
||||
# and correct output requires that all of these pieces interact in
|
||||
# the exact order in which I have arranged them.
|
||||
mapping = {k: k for k in unet_state_dict.keys()}
|
||||
for sd_name, hf_name in unet_conversion_map:
|
||||
mapping[hf_name] = sd_name
|
||||
for k, v in mapping.items():
|
||||
if "resnets" in k:
|
||||
for sd_part, hf_part in unet_conversion_map_resnet:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in unet_conversion_map_layer:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# ================#
|
||||
# VAE Conversion #
|
||||
# ================#
|
||||
|
||||
vae_conversion_map = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("nin_shortcut", "conv_shortcut"),
|
||||
("norm_out", "conv_norm_out"),
|
||||
("mid.attn_1.", "mid_block.attentions.0."),
|
||||
]
|
||||
|
||||
for i in range(4):
|
||||
# down_blocks have two resnets
|
||||
for j in range(2):
|
||||
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
||||
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
||||
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
||||
|
||||
if i < 3:
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
||||
sd_downsample_prefix = f"down.{i}.downsample."
|
||||
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
||||
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
# up_blocks have three resnets
|
||||
# also, up blocks in hf are numbered in reverse from sd
|
||||
for j in range(3):
|
||||
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
||||
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
||||
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
||||
|
||||
# this part accounts for mid blocks in both the encoder and the decoder
|
||||
for i in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
||||
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
||||
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
vae_conversion_map_attn = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("norm.", "group_norm."),
|
||||
("q.", "query."),
|
||||
("k.", "key."),
|
||||
("v.", "value."),
|
||||
("q.", "to_q."),
|
||||
("k.", "to_k."),
|
||||
("v.", "to_v."),
|
||||
("proj_out.", "to_out.0."),
|
||||
("proj_out.", "proj_attn."),
|
||||
]
|
||||
|
||||
|
||||
def reshape_weight_for_sd(w):
|
||||
# convert HF linear weights to SD conv2d weights
|
||||
return w.reshape(*w.shape, 1, 1)
|
||||
|
||||
|
||||
def convert_vae_state_dict(vae_state_dict):
|
||||
mapping = {k: k for k in vae_state_dict.keys()}
|
||||
for k, v in mapping.items():
|
||||
for sd_part, hf_part in vae_conversion_map:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
for k, v in mapping.items():
|
||||
if "attentions" in k:
|
||||
for sd_part, hf_part in vae_conversion_map_attn:
|
||||
v = v.replace(hf_part, sd_part)
|
||||
mapping[k] = v
|
||||
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
||||
weights_to_convert = ["q", "k", "v", "proj_out"]
|
||||
for k, v in new_state_dict.items():
|
||||
for weight_name in weights_to_convert:
|
||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||
logging.debug(f"Reshaping {k} for SD format")
|
||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# =========================#
|
||||
# Text Encoder Conversion #
|
||||
# =========================#
|
||||
|
||||
|
||||
textenc_conversion_lst = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("resblocks.", "text_model.encoder.layers."),
|
||||
("ln_1", "layer_norm1"),
|
||||
("ln_2", "layer_norm2"),
|
||||
(".c_fc.", ".fc1."),
|
||||
(".c_proj.", ".fc2."),
|
||||
(".attn", ".self_attn"),
|
||||
("ln_final.", "transformer.text_model.final_layer_norm."),
|
||||
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
||||
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
||||
]
|
||||
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
||||
textenc_pattern = re.compile("|".join(protected.keys()))
|
||||
|
||||
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
||||
code2idx = {"q": 0, "k": 1, "v": 2}
|
||||
|
||||
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
|
||||
def cat_tensors(tensors):
|
||||
x = 0
|
||||
for t in tensors:
|
||||
x += t.shape[0]
|
||||
|
||||
shape = [x] + list(tensors[0].shape)[1:]
|
||||
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
|
||||
|
||||
x = 0
|
||||
for t in tensors:
|
||||
out[x:x + t.shape[0]] = t
|
||||
x += t.shape[0]
|
||||
|
||||
return out
|
||||
|
||||
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
||||
new_state_dict = {}
|
||||
capture_qkv_weight = {}
|
||||
capture_qkv_bias = {}
|
||||
for k, v in text_enc_dict.items():
|
||||
if not k.startswith(prefix):
|
||||
continue
|
||||
if (
|
||||
k.endswith(".self_attn.q_proj.weight")
|
||||
or k.endswith(".self_attn.k_proj.weight")
|
||||
or k.endswith(".self_attn.v_proj.weight")
|
||||
):
|
||||
k_pre = k[: -len(".q_proj.weight")]
|
||||
k_code = k[-len("q_proj.weight")]
|
||||
if k_pre not in capture_qkv_weight:
|
||||
capture_qkv_weight[k_pre] = [None, None, None]
|
||||
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
||||
continue
|
||||
|
||||
if (
|
||||
k.endswith(".self_attn.q_proj.bias")
|
||||
or k.endswith(".self_attn.k_proj.bias")
|
||||
or k.endswith(".self_attn.v_proj.bias")
|
||||
):
|
||||
k_pre = k[: -len(".q_proj.bias")]
|
||||
k_code = k[-len("q_proj.bias")]
|
||||
if k_pre not in capture_qkv_bias:
|
||||
capture_qkv_bias[k_pre] = [None, None, None]
|
||||
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
||||
continue
|
||||
|
||||
text_proj = "transformer.text_projection.weight"
|
||||
if k.endswith(text_proj):
|
||||
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
|
||||
else:
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
||||
new_state_dict[relabelled_key] = v
|
||||
|
||||
for k_pre, tensors in capture_qkv_weight.items():
|
||||
if None in tensors:
|
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
||||
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
|
||||
|
||||
for k_pre, tensors in capture_qkv_bias.items():
|
||||
if None in tensors:
|
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
||||
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def convert_text_enc_state_dict(text_enc_dict):
|
||||
return text_enc_dict
|
||||
|
||||
|
||||
36
comfy/diffusers_load.py
Normal file
36
comfy/diffusers_load.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import os
|
||||
|
||||
import comfy.sd
|
||||
|
||||
def first_file(path, filenames):
|
||||
for f in filenames:
|
||||
p = os.path.join(path, f)
|
||||
if os.path.exists(p):
|
||||
return p
|
||||
return None
|
||||
|
||||
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
||||
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
||||
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
||||
|
||||
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
||||
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
||||
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
||||
|
||||
text_encoder_paths = [text_encoder1_path]
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
unet = comfy.sd.load_diffusion_model(unet_path)
|
||||
|
||||
clip = None
|
||||
if output_clip:
|
||||
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
||||
|
||||
vae = None
|
||||
if output_vae:
|
||||
sd = comfy.utils.load_torch_file(vae_path)
|
||||
vae = comfy.sd.VAE(sd=sd)
|
||||
|
||||
return (unet, clip, vae)
|
||||
875
comfy/extra_samplers/uni_pc.py
Normal file
875
comfy/extra_samplers/uni_pc.py
Normal file
@@ -0,0 +1,875 @@
|
||||
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
from tqdm.auto import trange, tqdm
|
||||
|
||||
|
||||
class NoiseScheduleVP:
|
||||
def __init__(
|
||||
self,
|
||||
schedule='discrete',
|
||||
betas=None,
|
||||
alphas_cumprod=None,
|
||||
continuous_beta_0=0.1,
|
||||
continuous_beta_1=20.,
|
||||
):
|
||||
r"""Create a wrapper class for the forward SDE (VP type).
|
||||
|
||||
***
|
||||
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
||||
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
||||
***
|
||||
|
||||
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
||||
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
||||
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
||||
|
||||
log_alpha_t = self.marginal_log_mean_coeff(t)
|
||||
sigma_t = self.marginal_std(t)
|
||||
lambda_t = self.marginal_lambda(t)
|
||||
|
||||
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
||||
|
||||
t = self.inverse_lambda(lambda_t)
|
||||
|
||||
===============================================================
|
||||
|
||||
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
||||
|
||||
1. For discrete-time DPMs:
|
||||
|
||||
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
||||
t_i = (i + 1) / N
|
||||
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
||||
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
||||
|
||||
Args:
|
||||
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
||||
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
||||
|
||||
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
||||
|
||||
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
||||
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
||||
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
||||
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
||||
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
||||
and
|
||||
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
||||
|
||||
|
||||
2. For continuous-time DPMs:
|
||||
|
||||
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
||||
schedule are the default settings in DDPM and improved-DDPM:
|
||||
|
||||
Args:
|
||||
beta_min: A `float` number. The smallest beta for the linear schedule.
|
||||
beta_max: A `float` number. The largest beta for the linear schedule.
|
||||
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
||||
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
||||
T: A `float` number. The ending time of the forward process.
|
||||
|
||||
===============================================================
|
||||
|
||||
Args:
|
||||
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
||||
'linear' or 'cosine' for continuous-time DPMs.
|
||||
Returns:
|
||||
A wrapper object of the forward SDE (VP type).
|
||||
|
||||
===============================================================
|
||||
|
||||
Example:
|
||||
|
||||
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
||||
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
||||
|
||||
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
||||
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
||||
|
||||
# For continuous-time DPMs (VPSDE), linear schedule:
|
||||
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
||||
|
||||
"""
|
||||
|
||||
if schedule not in ['discrete', 'linear', 'cosine']:
|
||||
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
||||
|
||||
self.schedule = schedule
|
||||
if schedule == 'discrete':
|
||||
if betas is not None:
|
||||
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
||||
else:
|
||||
assert alphas_cumprod is not None
|
||||
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
||||
self.total_N = len(log_alphas)
|
||||
self.T = 1.
|
||||
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
||||
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
||||
else:
|
||||
self.total_N = 1000
|
||||
self.beta_0 = continuous_beta_0
|
||||
self.beta_1 = continuous_beta_1
|
||||
self.cosine_s = 0.008
|
||||
self.cosine_beta_max = 999.
|
||||
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
||||
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
||||
self.schedule = schedule
|
||||
if schedule == 'cosine':
|
||||
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
||||
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
||||
self.T = 0.9946
|
||||
else:
|
||||
self.T = 1.
|
||||
|
||||
def marginal_log_mean_coeff(self, t):
|
||||
"""
|
||||
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
if self.schedule == 'discrete':
|
||||
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
||||
elif self.schedule == 'linear':
|
||||
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
||||
elif self.schedule == 'cosine':
|
||||
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
||||
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
||||
return log_alpha_t
|
||||
|
||||
def marginal_alpha(self, t):
|
||||
"""
|
||||
Compute alpha_t of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
return torch.exp(self.marginal_log_mean_coeff(t))
|
||||
|
||||
def marginal_std(self, t):
|
||||
"""
|
||||
Compute sigma_t of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
||||
|
||||
def marginal_lambda(self, t):
|
||||
"""
|
||||
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
||||
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
||||
return log_mean_coeff - log_std
|
||||
|
||||
def inverse_lambda(self, lamb):
|
||||
"""
|
||||
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
||||
"""
|
||||
if self.schedule == 'linear':
|
||||
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
||||
Delta = self.beta_0**2 + tmp
|
||||
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
||||
elif self.schedule == 'discrete':
|
||||
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
||||
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
||||
return t.reshape((-1,))
|
||||
else:
|
||||
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
||||
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
||||
t = t_fn(log_alpha)
|
||||
return t
|
||||
|
||||
|
||||
def model_wrapper(
|
||||
model,
|
||||
noise_schedule,
|
||||
model_type="noise",
|
||||
model_kwargs={},
|
||||
guidance_type="uncond",
|
||||
condition=None,
|
||||
unconditional_condition=None,
|
||||
guidance_scale=1.,
|
||||
classifier_fn=None,
|
||||
classifier_kwargs={},
|
||||
):
|
||||
"""Create a wrapper function for the noise prediction model.
|
||||
|
||||
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
||||
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
||||
|
||||
We support four types of the diffusion model by setting `model_type`:
|
||||
|
||||
1. "noise": noise prediction model. (Trained by predicting noise).
|
||||
|
||||
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
||||
|
||||
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
||||
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
||||
|
||||
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
||||
arXiv preprint arXiv:2202.00512 (2022).
|
||||
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
||||
arXiv preprint arXiv:2210.02303 (2022).
|
||||
|
||||
4. "score": marginal score function. (Trained by denoising score matching).
|
||||
Note that the score function and the noise prediction model follows a simple relationship:
|
||||
```
|
||||
noise(x_t, t) = -sigma_t * score(x_t, t)
|
||||
```
|
||||
|
||||
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
||||
1. "uncond": unconditional sampling by DPMs.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
|
||||
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
|
||||
The input `classifier_fn` has the following format:
|
||||
``
|
||||
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
||||
``
|
||||
|
||||
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
||||
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
||||
|
||||
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
||||
|
||||
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
||||
arXiv preprint arXiv:2207.12598 (2022).
|
||||
|
||||
|
||||
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
||||
or continuous-time labels (i.e. epsilon to T).
|
||||
|
||||
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
||||
``
|
||||
def model_fn(x, t_continuous) -> noise:
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
return noise_pred(model, x, t_input, **model_kwargs)
|
||||
``
|
||||
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
||||
|
||||
===============================================================
|
||||
|
||||
Args:
|
||||
model: A diffusion model with the corresponding format described above.
|
||||
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
||||
model_type: A `str`. The parameterization type of the diffusion model.
|
||||
"noise" or "x_start" or "v" or "score".
|
||||
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
||||
guidance_type: A `str`. The type of the guidance for sampling.
|
||||
"uncond" or "classifier" or "classifier-free".
|
||||
condition: A pytorch tensor. The condition for the guided sampling.
|
||||
Only used for "classifier" or "classifier-free" guidance type.
|
||||
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
||||
Only used for "classifier-free" guidance type.
|
||||
guidance_scale: A `float`. The scale for the guided sampling.
|
||||
classifier_fn: A classifier function. Only used for the classifier guidance.
|
||||
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
||||
Returns:
|
||||
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
||||
"""
|
||||
|
||||
def get_model_input_time(t_continuous):
|
||||
"""
|
||||
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
||||
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
||||
For continuous-time DPMs, we just use `t_continuous`.
|
||||
"""
|
||||
if noise_schedule.schedule == 'discrete':
|
||||
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
||||
else:
|
||||
return t_continuous
|
||||
|
||||
def noise_pred_fn(x, t_continuous, cond=None):
|
||||
if t_continuous.reshape((-1,)).shape[0] == 1:
|
||||
t_continuous = t_continuous.expand((x.shape[0]))
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
output = model(x, t_input, **model_kwargs)
|
||||
if model_type == "noise":
|
||||
return output
|
||||
elif model_type == "x_start":
|
||||
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
||||
elif model_type == "v":
|
||||
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
||||
elif model_type == "score":
|
||||
sigma_t = noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return -expand_dims(sigma_t, dims) * output
|
||||
|
||||
def cond_grad_fn(x, t_input):
|
||||
"""
|
||||
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
||||
"""
|
||||
with torch.enable_grad():
|
||||
x_in = x.detach().requires_grad_(True)
|
||||
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
||||
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
||||
|
||||
def model_fn(x, t_continuous):
|
||||
"""
|
||||
The noise predicition model function that is used for DPM-Solver.
|
||||
"""
|
||||
if t_continuous.reshape((-1,)).shape[0] == 1:
|
||||
t_continuous = t_continuous.expand((x.shape[0]))
|
||||
if guidance_type == "uncond":
|
||||
return noise_pred_fn(x, t_continuous)
|
||||
elif guidance_type == "classifier":
|
||||
assert classifier_fn is not None
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
cond_grad = cond_grad_fn(x, t_input)
|
||||
sigma_t = noise_schedule.marginal_std(t_continuous)
|
||||
noise = noise_pred_fn(x, t_continuous)
|
||||
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
||||
elif guidance_type == "classifier-free":
|
||||
if guidance_scale == 1. or unconditional_condition is None:
|
||||
return noise_pred_fn(x, t_continuous, cond=condition)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t_continuous] * 2)
|
||||
c_in = torch.cat([unconditional_condition, condition])
|
||||
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
||||
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
||||
|
||||
assert model_type in ["noise", "x_start", "v"]
|
||||
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
||||
return model_fn
|
||||
|
||||
|
||||
class UniPC:
|
||||
def __init__(
|
||||
self,
|
||||
model_fn,
|
||||
noise_schedule,
|
||||
predict_x0=True,
|
||||
thresholding=False,
|
||||
max_val=1.,
|
||||
variant='bh1',
|
||||
):
|
||||
"""Construct a UniPC.
|
||||
|
||||
We support both data_prediction and noise_prediction.
|
||||
"""
|
||||
self.model = model_fn
|
||||
self.noise_schedule = noise_schedule
|
||||
self.variant = variant
|
||||
self.predict_x0 = predict_x0
|
||||
self.thresholding = thresholding
|
||||
self.max_val = max_val
|
||||
|
||||
def dynamic_thresholding_fn(self, x0, t=None):
|
||||
"""
|
||||
The dynamic thresholding method.
|
||||
"""
|
||||
dims = x0.dim()
|
||||
p = self.dynamic_thresholding_ratio
|
||||
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
||||
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
||||
x0 = torch.clamp(x0, -s, s) / s
|
||||
return x0
|
||||
|
||||
def noise_prediction_fn(self, x, t):
|
||||
"""
|
||||
Return the noise prediction model.
|
||||
"""
|
||||
return self.model(x, t)
|
||||
|
||||
def data_prediction_fn(self, x, t):
|
||||
"""
|
||||
Return the data prediction model (with thresholding).
|
||||
"""
|
||||
noise = self.noise_prediction_fn(x, t)
|
||||
dims = x.dim()
|
||||
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
||||
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
||||
if self.thresholding:
|
||||
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
||||
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
||||
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
||||
x0 = torch.clamp(x0, -s, s) / s
|
||||
return x0
|
||||
|
||||
def model_fn(self, x, t):
|
||||
"""
|
||||
Convert the model to the noise prediction model or the data prediction model.
|
||||
"""
|
||||
if self.predict_x0:
|
||||
return self.data_prediction_fn(x, t)
|
||||
else:
|
||||
return self.noise_prediction_fn(x, t)
|
||||
|
||||
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
||||
"""Compute the intermediate time steps for sampling.
|
||||
"""
|
||||
if skip_type == 'logSNR':
|
||||
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
||||
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
||||
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
||||
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
||||
elif skip_type == 'time_uniform':
|
||||
return torch.linspace(t_T, t_0, N + 1).to(device)
|
||||
elif skip_type == 'time_quadratic':
|
||||
t_order = 2
|
||||
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
||||
return t
|
||||
else:
|
||||
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
||||
|
||||
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
||||
"""
|
||||
Get the order of each step for sampling by the singlestep DPM-Solver.
|
||||
"""
|
||||
if order == 3:
|
||||
K = steps // 3 + 1
|
||||
if steps % 3 == 0:
|
||||
orders = [3,] * (K - 2) + [2, 1]
|
||||
elif steps % 3 == 1:
|
||||
orders = [3,] * (K - 1) + [1]
|
||||
else:
|
||||
orders = [3,] * (K - 1) + [2]
|
||||
elif order == 2:
|
||||
if steps % 2 == 0:
|
||||
K = steps // 2
|
||||
orders = [2,] * K
|
||||
else:
|
||||
K = steps // 2 + 1
|
||||
orders = [2,] * (K - 1) + [1]
|
||||
elif order == 1:
|
||||
K = steps
|
||||
orders = [1,] * steps
|
||||
else:
|
||||
raise ValueError("'order' must be '1' or '2' or '3'.")
|
||||
if skip_type == 'logSNR':
|
||||
# To reproduce the results in DPM-Solver paper
|
||||
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
||||
else:
|
||||
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
||||
return timesteps_outer, orders
|
||||
|
||||
def denoise_to_zero_fn(self, x, s):
|
||||
"""
|
||||
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
||||
"""
|
||||
return self.data_prediction_fn(x, s)
|
||||
|
||||
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
||||
if len(t.shape) == 0:
|
||||
t = t.view(-1)
|
||||
if 'bh' in self.variant:
|
||||
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
||||
else:
|
||||
assert self.variant == 'vary_coeff'
|
||||
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
||||
|
||||
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
||||
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
||||
ns = self.noise_schedule
|
||||
assert order <= len(model_prev_list)
|
||||
|
||||
# first compute rks
|
||||
t_prev_0 = t_prev_list[-1]
|
||||
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
||||
lambda_t = ns.marginal_lambda(t)
|
||||
model_prev_0 = model_prev_list[-1]
|
||||
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
||||
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
||||
alpha_t = torch.exp(log_alpha_t)
|
||||
|
||||
h = lambda_t - lambda_prev_0
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
t_prev_i = t_prev_list[-(i + 1)]
|
||||
model_prev_i = model_prev_list[-(i + 1)]
|
||||
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
||||
rk = (lambda_prev_i - lambda_prev_0) / h
|
||||
rks.append(rk)
|
||||
D1s.append((model_prev_i - model_prev_0) / rk)
|
||||
|
||||
rks.append(1.)
|
||||
rks = torch.tensor(rks, device=x.device)
|
||||
|
||||
K = len(rks)
|
||||
# build C matrix
|
||||
C = []
|
||||
|
||||
col = torch.ones_like(rks)
|
||||
for k in range(1, K + 1):
|
||||
C.append(col)
|
||||
col = col * rks / (k + 1)
|
||||
C = torch.stack(C, dim=1)
|
||||
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1) # (B, K)
|
||||
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
||||
A_p = C_inv_p
|
||||
|
||||
if use_corrector:
|
||||
print('using corrector')
|
||||
C_inv = torch.linalg.inv(C)
|
||||
A_c = C_inv
|
||||
|
||||
hh = -h if self.predict_x0 else h
|
||||
h_phi_1 = torch.expm1(hh)
|
||||
h_phi_ks = []
|
||||
factorial_k = 1
|
||||
h_phi_k = h_phi_1
|
||||
for k in range(1, K + 2):
|
||||
h_phi_ks.append(h_phi_k)
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
||||
factorial_k *= (k + 1)
|
||||
|
||||
model_t = None
|
||||
if self.predict_x0:
|
||||
x_t_ = (
|
||||
sigma_t / sigma_prev_0 * x
|
||||
- alpha_t * h_phi_1 * model_prev_0
|
||||
)
|
||||
# now predictor
|
||||
x_t = x_t_
|
||||
if len(D1s) > 0:
|
||||
# compute the residuals for predictor
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
||||
# now corrector
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_
|
||||
k = 0
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
||||
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
||||
else:
|
||||
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
||||
x_t_ = (
|
||||
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
||||
- (sigma_t * h_phi_1) * model_prev_0
|
||||
)
|
||||
# now predictor
|
||||
x_t = x_t_
|
||||
if len(D1s) > 0:
|
||||
# compute the residuals for predictor
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
||||
# now corrector
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_
|
||||
k = 0
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
||||
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
||||
return x_t, model_t
|
||||
|
||||
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
||||
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
||||
ns = self.noise_schedule
|
||||
assert order <= len(model_prev_list)
|
||||
dims = x.dim()
|
||||
|
||||
# first compute rks
|
||||
t_prev_0 = t_prev_list[-1]
|
||||
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
||||
lambda_t = ns.marginal_lambda(t)
|
||||
model_prev_0 = model_prev_list[-1]
|
||||
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
||||
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
||||
alpha_t = torch.exp(log_alpha_t)
|
||||
|
||||
h = lambda_t - lambda_prev_0
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
t_prev_i = t_prev_list[-(i + 1)]
|
||||
model_prev_i = model_prev_list[-(i + 1)]
|
||||
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
||||
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
||||
rks.append(rk)
|
||||
D1s.append((model_prev_i - model_prev_0) / rk)
|
||||
|
||||
rks.append(1.)
|
||||
rks = torch.tensor(rks, device=x.device)
|
||||
|
||||
R = []
|
||||
b = []
|
||||
|
||||
hh = -h[0] if self.predict_x0 else h[0]
|
||||
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
||||
h_phi_k = h_phi_1 / hh - 1
|
||||
|
||||
factorial_i = 1
|
||||
|
||||
if self.variant == 'bh1':
|
||||
B_h = hh
|
||||
elif self.variant == 'bh2':
|
||||
B_h = torch.expm1(hh)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
for i in range(1, order + 1):
|
||||
R.append(torch.pow(rks, i - 1))
|
||||
b.append(h_phi_k * factorial_i / B_h)
|
||||
factorial_i *= (i + 1)
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
||||
|
||||
R = torch.stack(R)
|
||||
b = torch.tensor(b, device=x.device)
|
||||
|
||||
# now predictor
|
||||
use_predictor = len(D1s) > 0 and x_t is None
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1) # (B, K)
|
||||
if x_t is None:
|
||||
# for order 2, we use a simplified version
|
||||
if order == 2:
|
||||
rhos_p = torch.tensor([0.5], device=b.device)
|
||||
else:
|
||||
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
||||
else:
|
||||
D1s = None
|
||||
|
||||
if use_corrector:
|
||||
# print('using corrector')
|
||||
# for order 1, we use a simplified version
|
||||
if order == 1:
|
||||
rhos_c = torch.tensor([0.5], device=b.device)
|
||||
else:
|
||||
rhos_c = torch.linalg.solve(R, b)
|
||||
|
||||
model_t = None
|
||||
if self.predict_x0:
|
||||
x_t_ = (
|
||||
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
||||
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
||||
)
|
||||
|
||||
if x_t is None:
|
||||
if use_predictor:
|
||||
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
||||
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
||||
else:
|
||||
x_t_ = (
|
||||
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
||||
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
||||
)
|
||||
if x_t is None:
|
||||
if use_predictor:
|
||||
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
||||
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
||||
return x_t, model_t
|
||||
|
||||
|
||||
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
||||
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
||||
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
||||
):
|
||||
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||
# t_T = self.noise_schedule.T if t_start is None else t_start
|
||||
device = x.device
|
||||
steps = len(timesteps) - 1
|
||||
if method == 'multistep':
|
||||
assert steps >= order
|
||||
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
||||
assert timesteps.shape[0] - 1 == steps
|
||||
# with torch.no_grad():
|
||||
for step_index in trange(steps, disable=disable_pbar):
|
||||
if step_index == 0:
|
||||
vec_t = timesteps[0].expand((x.shape[0]))
|
||||
model_prev_list = [self.model_fn(x, vec_t)]
|
||||
t_prev_list = [vec_t]
|
||||
elif step_index < order:
|
||||
init_order = step_index
|
||||
# Init the first `order` values by lower order multistep DPM-Solver.
|
||||
# for init_order in range(1, order):
|
||||
vec_t = timesteps[init_order].expand(x.shape[0])
|
||||
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
||||
if model_x is None:
|
||||
model_x = self.model_fn(x, vec_t)
|
||||
model_prev_list.append(model_x)
|
||||
t_prev_list.append(vec_t)
|
||||
else:
|
||||
extra_final_step = 0
|
||||
if step_index == (steps - 1):
|
||||
extra_final_step = 1
|
||||
for step in range(step_index, step_index + 1 + extra_final_step):
|
||||
vec_t = timesteps[step].expand(x.shape[0])
|
||||
if lower_order_final:
|
||||
step_order = min(order, steps + 1 - step)
|
||||
else:
|
||||
step_order = order
|
||||
# print('this step order:', step_order)
|
||||
if step == steps:
|
||||
# print('do not run corrector at the last step')
|
||||
use_corrector = False
|
||||
else:
|
||||
use_corrector = True
|
||||
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
||||
for i in range(order - 1):
|
||||
t_prev_list[i] = t_prev_list[i + 1]
|
||||
model_prev_list[i] = model_prev_list[i + 1]
|
||||
t_prev_list[-1] = vec_t
|
||||
# We do not need to evaluate the final model value.
|
||||
if step < steps:
|
||||
if model_x is None:
|
||||
model_x = self.model_fn(x, vec_t)
|
||||
model_prev_list[-1] = model_x
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
# if denoise_to_zero:
|
||||
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
||||
return x
|
||||
|
||||
|
||||
#############################################################
|
||||
# other utility functions
|
||||
#############################################################
|
||||
|
||||
def interpolate_fn(x, xp, yp):
|
||||
"""
|
||||
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
||||
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
||||
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
||||
|
||||
Args:
|
||||
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
||||
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
||||
yp: PyTorch tensor with shape [C, K].
|
||||
Returns:
|
||||
The function values f(x), with shape [N, C].
|
||||
"""
|
||||
N, K = x.shape[0], xp.shape[1]
|
||||
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
||||
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
||||
x_idx = torch.argmin(x_indices, dim=2)
|
||||
cand_start_idx = x_idx - 1
|
||||
start_idx = torch.where(
|
||||
torch.eq(x_idx, 0),
|
||||
torch.tensor(1, device=x.device),
|
||||
torch.where(
|
||||
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
||||
),
|
||||
)
|
||||
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
||||
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
||||
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
||||
start_idx2 = torch.where(
|
||||
torch.eq(x_idx, 0),
|
||||
torch.tensor(0, device=x.device),
|
||||
torch.where(
|
||||
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
||||
),
|
||||
)
|
||||
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
||||
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
||||
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
||||
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
||||
return cand
|
||||
|
||||
|
||||
def expand_dims(v, dims):
|
||||
"""
|
||||
Expand the tensor `v` to the dim `dims`.
|
||||
|
||||
Args:
|
||||
`v`: a PyTorch tensor with shape [N].
|
||||
`dim`: a `int`.
|
||||
Returns:
|
||||
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
||||
"""
|
||||
return v[(...,) + (None,)*(dims - 1)]
|
||||
|
||||
|
||||
class SigmaConvert:
|
||||
schedule = ""
|
||||
def marginal_log_mean_coeff(self, sigma):
|
||||
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
||||
|
||||
def marginal_alpha(self, t):
|
||||
return torch.exp(self.marginal_log_mean_coeff(t))
|
||||
|
||||
def marginal_std(self, t):
|
||||
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
||||
|
||||
def marginal_lambda(self, t):
|
||||
"""
|
||||
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
||||
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
||||
return log_mean_coeff - log_std
|
||||
|
||||
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
||||
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
||||
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
||||
return (input - model(input, sigma_in, **kwargs)) / sigma
|
||||
|
||||
|
||||
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
||||
timesteps = sigmas.clone()
|
||||
if sigmas[-1] == 0:
|
||||
timesteps = sigmas[:]
|
||||
timesteps[-1] = 0.001
|
||||
else:
|
||||
timesteps = sigmas.clone()
|
||||
ns = SigmaConvert()
|
||||
|
||||
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
|
||||
model_type = "noise"
|
||||
|
||||
model_fn = model_wrapper(
|
||||
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
||||
ns,
|
||||
model_type=model_type,
|
||||
guidance_type="uncond",
|
||||
model_kwargs=extra_args,
|
||||
)
|
||||
|
||||
order = min(3, len(timesteps) - 2)
|
||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
|
||||
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
||||
x /= ns.marginal_alpha(timesteps[-1])
|
||||
return x
|
||||
|
||||
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
|
||||
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
|
||||
67
comfy/float.py
Normal file
67
comfy/float.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import torch
|
||||
|
||||
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
|
||||
mantissa_scaled = torch.where(
|
||||
normal_mask,
|
||||
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
|
||||
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
|
||||
)
|
||||
|
||||
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
|
||||
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
|
||||
|
||||
#Not 100% sure about this
|
||||
def manual_stochastic_round_to_float8(x, dtype, generator=None):
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
|
||||
elif dtype == torch.float8_e5m2:
|
||||
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
|
||||
else:
|
||||
raise ValueError("Unsupported dtype")
|
||||
|
||||
x = x.half()
|
||||
sign = torch.sign(x)
|
||||
abs_x = x.abs()
|
||||
sign = torch.where(abs_x == 0, 0, sign)
|
||||
|
||||
# Combine exponent calculation and clamping
|
||||
exponent = torch.clamp(
|
||||
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
|
||||
0, 2**EXPONENT_BITS - 1
|
||||
)
|
||||
|
||||
# Combine mantissa calculation and rounding
|
||||
normal_mask = ~(exponent == 0)
|
||||
|
||||
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
|
||||
|
||||
sign *= torch.where(
|
||||
normal_mask,
|
||||
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
|
||||
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
|
||||
)
|
||||
|
||||
inf = torch.finfo(dtype)
|
||||
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
|
||||
return sign
|
||||
|
||||
|
||||
|
||||
def stochastic_rounding(value, dtype, seed=0):
|
||||
if dtype == torch.float32:
|
||||
return value.to(dtype=torch.float32)
|
||||
if dtype == torch.float16:
|
||||
return value.to(dtype=torch.float16)
|
||||
if dtype == torch.bfloat16:
|
||||
return value.to(dtype=torch.bfloat16)
|
||||
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
|
||||
generator = torch.Generator(device=value.device)
|
||||
generator.manual_seed(seed)
|
||||
output = torch.empty_like(value, dtype=dtype)
|
||||
num_slices = max(1, (value.numel() / (4096 * 4096)))
|
||||
slice_size = max(1, round(value.shape[0] / num_slices))
|
||||
for i in range(0, value.shape[0], slice_size):
|
||||
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
|
||||
return output
|
||||
|
||||
return value.to(dtype=dtype)
|
||||
343
comfy/gligen.py
Normal file
343
comfy/gligen.py
Normal file
@@ -0,0 +1,343 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from .ldm.modules.attention import CrossAttention
|
||||
from inspect import isfunction
|
||||
import comfy.ops
|
||||
ops = comfy.ops.manual_cast
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = ops.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * torch.nn.functional.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
ops.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
ops.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class GatedCrossAttentionDense(nn.Module):
|
||||
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
||||
super().__init__()
|
||||
|
||||
self.attn = CrossAttention(
|
||||
query_dim=query_dim,
|
||||
context_dim=context_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
operations=ops)
|
||||
self.ff = FeedForward(query_dim, glu=True)
|
||||
|
||||
self.norm1 = ops.LayerNorm(query_dim)
|
||||
self.norm2 = ops.LayerNorm(query_dim)
|
||||
|
||||
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
||||
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
||||
|
||||
# this can be useful: we can externally change magnitude of tanh(alpha)
|
||||
# for example, when it is set to 0, then the entire model is same as
|
||||
# original one
|
||||
self.scale = 1
|
||||
|
||||
def forward(self, x, objs):
|
||||
|
||||
x = x + self.scale * \
|
||||
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
|
||||
x = x + self.scale * \
|
||||
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class GatedSelfAttentionDense(nn.Module):
|
||||
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
||||
super().__init__()
|
||||
|
||||
# we need a linear projection since we need cat visual feature and obj
|
||||
# feature
|
||||
self.linear = ops.Linear(context_dim, query_dim)
|
||||
|
||||
self.attn = CrossAttention(
|
||||
query_dim=query_dim,
|
||||
context_dim=query_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
operations=ops)
|
||||
self.ff = FeedForward(query_dim, glu=True)
|
||||
|
||||
self.norm1 = ops.LayerNorm(query_dim)
|
||||
self.norm2 = ops.LayerNorm(query_dim)
|
||||
|
||||
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
||||
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
||||
|
||||
# this can be useful: we can externally change magnitude of tanh(alpha)
|
||||
# for example, when it is set to 0, then the entire model is same as
|
||||
# original one
|
||||
self.scale = 1
|
||||
|
||||
def forward(self, x, objs):
|
||||
|
||||
N_visual = x.shape[1]
|
||||
objs = self.linear(objs)
|
||||
|
||||
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
|
||||
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
|
||||
x = x + self.scale * \
|
||||
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class GatedSelfAttentionDense2(nn.Module):
|
||||
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
||||
super().__init__()
|
||||
|
||||
# we need a linear projection since we need cat visual feature and obj
|
||||
# feature
|
||||
self.linear = ops.Linear(context_dim, query_dim)
|
||||
|
||||
self.attn = CrossAttention(
|
||||
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
|
||||
self.ff = FeedForward(query_dim, glu=True)
|
||||
|
||||
self.norm1 = ops.LayerNorm(query_dim)
|
||||
self.norm2 = ops.LayerNorm(query_dim)
|
||||
|
||||
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
||||
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
||||
|
||||
# this can be useful: we can externally change magnitude of tanh(alpha)
|
||||
# for example, when it is set to 0, then the entire model is same as
|
||||
# original one
|
||||
self.scale = 1
|
||||
|
||||
def forward(self, x, objs):
|
||||
|
||||
B, N_visual, _ = x.shape
|
||||
B, N_ground, _ = objs.shape
|
||||
|
||||
objs = self.linear(objs)
|
||||
|
||||
# sanity check
|
||||
size_v = math.sqrt(N_visual)
|
||||
size_g = math.sqrt(N_ground)
|
||||
assert int(size_v) == size_v, "Visual tokens must be square rootable"
|
||||
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
|
||||
size_v = int(size_v)
|
||||
size_g = int(size_g)
|
||||
|
||||
# select grounding token and resize it to visual token size as residual
|
||||
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
|
||||
:, N_visual:, :]
|
||||
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
|
||||
out = torch.nn.functional.interpolate(
|
||||
out, (size_v, size_v), mode='bicubic')
|
||||
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
|
||||
|
||||
# add residual to visual feature
|
||||
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
|
||||
x = x + self.scale * \
|
||||
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class FourierEmbedder():
|
||||
def __init__(self, num_freqs=64, temperature=100):
|
||||
|
||||
self.num_freqs = num_freqs
|
||||
self.temperature = temperature
|
||||
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, x, cat_dim=-1):
|
||||
"x: arbitrary shape of tensor. dim: cat dim"
|
||||
out = []
|
||||
for freq in self.freq_bands:
|
||||
out.append(torch.sin(freq * x))
|
||||
out.append(torch.cos(freq * x))
|
||||
return torch.cat(out, cat_dim)
|
||||
|
||||
|
||||
class PositionNet(nn.Module):
|
||||
def __init__(self, in_dim, out_dim, fourier_freqs=8):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
||||
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
|
||||
|
||||
self.linears = nn.Sequential(
|
||||
ops.Linear(self.in_dim + self.position_dim, 512),
|
||||
nn.SiLU(),
|
||||
ops.Linear(512, 512),
|
||||
nn.SiLU(),
|
||||
ops.Linear(512, out_dim),
|
||||
)
|
||||
|
||||
self.null_positive_feature = torch.nn.Parameter(
|
||||
torch.zeros([self.in_dim]))
|
||||
self.null_position_feature = torch.nn.Parameter(
|
||||
torch.zeros([self.position_dim]))
|
||||
|
||||
def forward(self, boxes, masks, positive_embeddings):
|
||||
B, N, _ = boxes.shape
|
||||
masks = masks.unsqueeze(-1)
|
||||
positive_embeddings = positive_embeddings
|
||||
|
||||
# embedding position (it may includes padding as placeholder)
|
||||
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
||||
|
||||
# learnable null embedding
|
||||
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
||||
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
||||
|
||||
# replace padding with learnable null embedding
|
||||
positive_embeddings = positive_embeddings * \
|
||||
masks + (1 - masks) * positive_null
|
||||
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
|
||||
|
||||
objs = self.linears(
|
||||
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
|
||||
assert objs.shape == torch.Size([B, N, self.out_dim])
|
||||
return objs
|
||||
|
||||
|
||||
class Gligen(nn.Module):
|
||||
def __init__(self, modules, position_net, key_dim):
|
||||
super().__init__()
|
||||
self.module_list = nn.ModuleList(modules)
|
||||
self.position_net = position_net
|
||||
self.key_dim = key_dim
|
||||
self.max_objs = 30
|
||||
self.current_device = torch.device("cpu")
|
||||
|
||||
def _set_position(self, boxes, masks, positive_embeddings):
|
||||
objs = self.position_net(boxes, masks, positive_embeddings)
|
||||
def func(x, extra_options):
|
||||
key = extra_options["transformer_index"]
|
||||
module = self.module_list[key]
|
||||
return module(x, objs.to(device=x.device, dtype=x.dtype))
|
||||
return func
|
||||
|
||||
def set_position(self, latent_image_shape, position_params, device):
|
||||
batch, c, h, w = latent_image_shape
|
||||
masks = torch.zeros([self.max_objs], device="cpu")
|
||||
boxes = []
|
||||
positive_embeddings = []
|
||||
for p in position_params:
|
||||
x1 = (p[4]) / w
|
||||
y1 = (p[3]) / h
|
||||
x2 = (p[4] + p[2]) / w
|
||||
y2 = (p[3] + p[1]) / h
|
||||
masks[len(boxes)] = 1.0
|
||||
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
|
||||
positive_embeddings += [p[0]]
|
||||
append_boxes = []
|
||||
append_conds = []
|
||||
if len(boxes) < self.max_objs:
|
||||
append_boxes = [torch.zeros(
|
||||
[self.max_objs - len(boxes), 4], device="cpu")]
|
||||
append_conds = [torch.zeros(
|
||||
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
|
||||
|
||||
box_out = torch.cat(
|
||||
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
|
||||
masks = masks.unsqueeze(0).repeat(batch, 1)
|
||||
conds = torch.cat(positive_embeddings +
|
||||
append_conds).unsqueeze(0).repeat(batch, 1, 1)
|
||||
return self._set_position(
|
||||
box_out.to(device),
|
||||
masks.to(device),
|
||||
conds.to(device))
|
||||
|
||||
def set_empty(self, latent_image_shape, device):
|
||||
batch, c, h, w = latent_image_shape
|
||||
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
|
||||
box_out = torch.zeros([self.max_objs, 4],
|
||||
device="cpu").repeat(batch, 1, 1)
|
||||
conds = torch.zeros([self.max_objs, self.key_dim],
|
||||
device="cpu").repeat(batch, 1, 1)
|
||||
return self._set_position(
|
||||
box_out.to(device),
|
||||
masks.to(device),
|
||||
conds.to(device))
|
||||
|
||||
|
||||
def load_gligen(sd):
|
||||
sd_k = sd.keys()
|
||||
output_list = []
|
||||
key_dim = 768
|
||||
for a in ["input_blocks", "middle_block", "output_blocks"]:
|
||||
for b in range(20):
|
||||
k_temp = filter(lambda k: "{}.{}.".format(a, b)
|
||||
in k and ".fuser." in k, sd_k)
|
||||
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
|
||||
|
||||
n_sd = {}
|
||||
for k in k_temp:
|
||||
n_sd[k[1]] = sd[k[0]]
|
||||
if len(n_sd) > 0:
|
||||
query_dim = n_sd["linear.weight"].shape[0]
|
||||
key_dim = n_sd["linear.weight"].shape[1]
|
||||
|
||||
if key_dim == 768: # SD1.x
|
||||
n_heads = 8
|
||||
d_head = query_dim // n_heads
|
||||
else:
|
||||
d_head = 64
|
||||
n_heads = query_dim // d_head
|
||||
|
||||
gated = GatedSelfAttentionDense(
|
||||
query_dim, key_dim, n_heads, d_head)
|
||||
gated.load_state_dict(n_sd, strict=False)
|
||||
output_list.append(gated)
|
||||
|
||||
if "position_net.null_positive_feature" in sd_k:
|
||||
in_dim = sd["position_net.null_positive_feature"].shape[0]
|
||||
out_dim = sd["position_net.linears.4.weight"].shape[0]
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.position_net = PositionNet(in_dim, out_dim)
|
||||
w.load_state_dict(sd, strict=False)
|
||||
|
||||
gligen = Gligen(output_list, w.position_net, key_dim)
|
||||
return gligen
|
||||
121
comfy/k_diffusion/deis.py
Normal file
121
comfy/k_diffusion/deis.py
Normal file
@@ -0,0 +1,121 @@
|
||||
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
|
||||
#under Apache 2 license
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
|
||||
#############################
|
||||
### Utils for DEIS solver ###
|
||||
#############################
|
||||
#----------------------------------------------------------------------------
|
||||
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
|
||||
|
||||
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
|
||||
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
|
||||
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
|
||||
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
|
||||
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
|
||||
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
|
||||
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def cal_poly(prev_t, j, taus):
|
||||
poly = 1
|
||||
for k in range(prev_t.shape[0]):
|
||||
if k == j:
|
||||
continue
|
||||
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
|
||||
return poly
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
# Transfer from t to alpha_t.
|
||||
|
||||
def t2alpha_fn(beta_0, beta_1, t):
|
||||
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def cal_intergrand(beta_0, beta_1, taus):
|
||||
with torch.inference_mode(mode=False):
|
||||
taus = taus.clone()
|
||||
beta_0 = beta_0.clone()
|
||||
beta_1 = beta_1.clone()
|
||||
with torch.enable_grad():
|
||||
taus.requires_grad_(True)
|
||||
alpha = t2alpha_fn(beta_0, beta_1, taus)
|
||||
log_alpha = alpha.log()
|
||||
log_alpha.sum().backward()
|
||||
d_log_alpha_dtau = taus.grad
|
||||
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
|
||||
return integrand
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
|
||||
"""
|
||||
Get the coefficient list for DEIS sampling.
|
||||
|
||||
Args:
|
||||
t_steps: A pytorch tensor. The time steps for sampling.
|
||||
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
|
||||
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
|
||||
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
|
||||
Returns:
|
||||
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
|
||||
"""
|
||||
if deis_mode == 'tab':
|
||||
t_steps, beta_0, beta_1 = edm2t(t_steps)
|
||||
C = []
|
||||
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
||||
order = min(i+1, max_order)
|
||||
if order == 1:
|
||||
C.append([])
|
||||
else:
|
||||
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
|
||||
dtau = (t_next - t_cur) / N
|
||||
prev_t = t_steps[[i - k for k in range(order)]]
|
||||
coeff_temp = []
|
||||
integrand = cal_intergrand(beta_0, beta_1, taus)
|
||||
for j in range(order):
|
||||
poly = cal_poly(prev_t, j, taus)
|
||||
coeff_temp.append(torch.sum(integrand * poly) * dtau)
|
||||
C.append(coeff_temp)
|
||||
|
||||
elif deis_mode == 'rhoab':
|
||||
# Analytical solution, second order
|
||||
def get_def_intergral_2(a, b, start, end, c):
|
||||
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
|
||||
return coeff / ((c - a) * (c - b))
|
||||
|
||||
# Analytical solution, third order
|
||||
def get_def_intergral_3(a, b, c, start, end, d):
|
||||
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
|
||||
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
|
||||
return coeff / ((d - a) * (d - b) * (d - c))
|
||||
|
||||
C = []
|
||||
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
||||
order = min(i, max_order)
|
||||
if order == 0:
|
||||
C.append([])
|
||||
else:
|
||||
prev_t = t_steps[[i - k for k in range(order+1)]]
|
||||
if order == 1:
|
||||
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
|
||||
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
|
||||
coeff_temp = [coeff_cur, coeff_prev1]
|
||||
elif order == 2:
|
||||
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
|
||||
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
|
||||
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
|
||||
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
|
||||
elif order == 3:
|
||||
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
|
||||
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
|
||||
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
|
||||
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
|
||||
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
|
||||
C.append(coeff_temp)
|
||||
return C
|
||||
|
||||
1211
comfy/k_diffusion/sampling.py
Normal file
1211
comfy/k_diffusion/sampling.py
Normal file
File diff suppressed because it is too large
Load Diff
313
comfy/k_diffusion/utils.py
Normal file
313
comfy/k_diffusion/utils.py
Normal file
@@ -0,0 +1,313 @@
|
||||
from contextlib import contextmanager
|
||||
import hashlib
|
||||
import math
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import urllib
|
||||
import warnings
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
from torch.utils import data
|
||||
|
||||
|
||||
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
|
||||
"""Apply passed in transforms for HuggingFace Datasets."""
|
||||
images = [transform(image.convert(mode)) for image in examples[image_key]]
|
||||
return {image_key: images}
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||||
expanded = x[(...,) + (None,) * dims_to_append]
|
||||
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
|
||||
# https://github.com/pytorch/pytorch/issues/84364
|
||||
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
|
||||
|
||||
|
||||
def n_params(module):
|
||||
"""Returns the number of trainable parameters in a module."""
|
||||
return sum(p.numel() for p in module.parameters())
|
||||
|
||||
|
||||
def download_file(path, url, digest=None):
|
||||
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
|
||||
path = Path(path)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
if not path.exists():
|
||||
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
|
||||
shutil.copyfileobj(response, f)
|
||||
if digest is not None:
|
||||
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
|
||||
if digest != file_digest:
|
||||
raise OSError(f'hash of {path} (url: {url}) failed to validate')
|
||||
return path
|
||||
|
||||
|
||||
@contextmanager
|
||||
def train_mode(model, mode=True):
|
||||
"""A context manager that places a model into training mode and restores
|
||||
the previous mode on exit."""
|
||||
modes = [module.training for module in model.modules()]
|
||||
try:
|
||||
yield model.train(mode)
|
||||
finally:
|
||||
for i, module in enumerate(model.modules()):
|
||||
module.training = modes[i]
|
||||
|
||||
|
||||
def eval_mode(model):
|
||||
"""A context manager that places a model into evaluation mode and restores
|
||||
the previous mode on exit."""
|
||||
return train_mode(model, False)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def ema_update(model, averaged_model, decay):
|
||||
"""Incorporates updated model parameters into an exponential moving averaged
|
||||
version of a model. It should be called after each optimizer step."""
|
||||
model_params = dict(model.named_parameters())
|
||||
averaged_params = dict(averaged_model.named_parameters())
|
||||
assert model_params.keys() == averaged_params.keys()
|
||||
|
||||
for name, param in model_params.items():
|
||||
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
|
||||
|
||||
model_buffers = dict(model.named_buffers())
|
||||
averaged_buffers = dict(averaged_model.named_buffers())
|
||||
assert model_buffers.keys() == averaged_buffers.keys()
|
||||
|
||||
for name, buf in model_buffers.items():
|
||||
averaged_buffers[name].copy_(buf)
|
||||
|
||||
|
||||
class EMAWarmup:
|
||||
"""Implements an EMA warmup using an inverse decay schedule.
|
||||
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
|
||||
good values for models you plan to train for a million or more steps (reaches decay
|
||||
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
|
||||
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
|
||||
215.4k steps).
|
||||
Args:
|
||||
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
||||
power (float): Exponential factor of EMA warmup. Default: 1.
|
||||
min_value (float): The minimum EMA decay rate. Default: 0.
|
||||
max_value (float): The maximum EMA decay rate. Default: 1.
|
||||
start_at (int): The epoch to start averaging at. Default: 0.
|
||||
last_epoch (int): The index of last epoch. Default: 0.
|
||||
"""
|
||||
|
||||
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
|
||||
last_epoch=0):
|
||||
self.inv_gamma = inv_gamma
|
||||
self.power = power
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value
|
||||
self.start_at = start_at
|
||||
self.last_epoch = last_epoch
|
||||
|
||||
def state_dict(self):
|
||||
"""Returns the state of the class as a :class:`dict`."""
|
||||
return dict(self.__dict__.items())
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Loads the class's state.
|
||||
Args:
|
||||
state_dict (dict): scaler state. Should be an object returned
|
||||
from a call to :meth:`state_dict`.
|
||||
"""
|
||||
self.__dict__.update(state_dict)
|
||||
|
||||
def get_value(self):
|
||||
"""Gets the current EMA decay rate."""
|
||||
epoch = max(0, self.last_epoch - self.start_at)
|
||||
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
|
||||
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
|
||||
|
||||
def step(self):
|
||||
"""Updates the step count."""
|
||||
self.last_epoch += 1
|
||||
|
||||
|
||||
class InverseLR(optim.lr_scheduler._LRScheduler):
|
||||
"""Implements an inverse decay learning rate schedule with an optional exponential
|
||||
warmup. When last_epoch=-1, sets initial lr as lr.
|
||||
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
||||
(1 / 2)**power of its original value.
|
||||
Args:
|
||||
optimizer (Optimizer): Wrapped optimizer.
|
||||
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
||||
power (float): Exponential factor of learning rate decay. Default: 1.
|
||||
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
||||
Default: 0.
|
||||
min_lr (float): The minimum learning rate. Default: 0.
|
||||
last_epoch (int): The index of last epoch. Default: -1.
|
||||
verbose (bool): If ``True``, prints a message to stdout for
|
||||
each update. Default: ``False``.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
|
||||
last_epoch=-1, verbose=False):
|
||||
self.inv_gamma = inv_gamma
|
||||
self.power = power
|
||||
if not 0. <= warmup < 1:
|
||||
raise ValueError('Invalid value for warmup')
|
||||
self.warmup = warmup
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch, verbose)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||||
"please use `get_last_lr()`.")
|
||||
|
||||
return self._get_closed_form_lr()
|
||||
|
||||
def _get_closed_form_lr(self):
|
||||
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
||||
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
||||
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
||||
for base_lr in self.base_lrs]
|
||||
|
||||
|
||||
class ExponentialLR(optim.lr_scheduler._LRScheduler):
|
||||
"""Implements an exponential learning rate schedule with an optional exponential
|
||||
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
|
||||
continuously by decay (default 0.5) every num_steps steps.
|
||||
Args:
|
||||
optimizer (Optimizer): Wrapped optimizer.
|
||||
num_steps (float): The number of steps to decay the learning rate by decay in.
|
||||
decay (float): The factor by which to decay the learning rate every num_steps
|
||||
steps. Default: 0.5.
|
||||
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
||||
Default: 0.
|
||||
min_lr (float): The minimum learning rate. Default: 0.
|
||||
last_epoch (int): The index of last epoch. Default: -1.
|
||||
verbose (bool): If ``True``, prints a message to stdout for
|
||||
each update. Default: ``False``.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
|
||||
last_epoch=-1, verbose=False):
|
||||
self.num_steps = num_steps
|
||||
self.decay = decay
|
||||
if not 0. <= warmup < 1:
|
||||
raise ValueError('Invalid value for warmup')
|
||||
self.warmup = warmup
|
||||
self.min_lr = min_lr
|
||||
super().__init__(optimizer, last_epoch, verbose)
|
||||
|
||||
def get_lr(self):
|
||||
if not self._get_lr_called_within_step:
|
||||
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||||
"please use `get_last_lr()`.")
|
||||
|
||||
return self._get_closed_form_lr()
|
||||
|
||||
def _get_closed_form_lr(self):
|
||||
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
||||
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
|
||||
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
||||
for base_lr in self.base_lrs]
|
||||
|
||||
|
||||
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
|
||||
"""Draws samples from an lognormal distribution."""
|
||||
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
|
||||
|
||||
|
||||
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
||||
"""Draws samples from an optionally truncated log-logistic distribution."""
|
||||
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
|
||||
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
|
||||
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
|
||||
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
|
||||
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
|
||||
return u.logit().mul(scale).add(loc).exp().to(dtype)
|
||||
|
||||
|
||||
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
|
||||
"""Draws samples from an log-uniform distribution."""
|
||||
min_value = math.log(min_value)
|
||||
max_value = math.log(max_value)
|
||||
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
|
||||
|
||||
|
||||
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
||||
"""Draws samples from a truncated v-diffusion training timestep distribution."""
|
||||
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
|
||||
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
|
||||
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
|
||||
return torch.tan(u * math.pi / 2) * sigma_data
|
||||
|
||||
|
||||
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
|
||||
"""Draws samples from a split lognormal distribution."""
|
||||
n = torch.randn(shape, device=device, dtype=dtype).abs()
|
||||
u = torch.rand(shape, device=device, dtype=dtype)
|
||||
n_left = n * -scale_1 + loc
|
||||
n_right = n * scale_2 + loc
|
||||
ratio = scale_1 / (scale_1 + scale_2)
|
||||
return torch.where(u < ratio, n_left, n_right).exp()
|
||||
|
||||
|
||||
class FolderOfImages(data.Dataset):
|
||||
"""Recursively finds all images in a directory. It does not support
|
||||
classes/targets."""
|
||||
|
||||
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
|
||||
|
||||
def __init__(self, root, transform=None):
|
||||
super().__init__()
|
||||
self.root = Path(root)
|
||||
self.transform = nn.Identity() if transform is None else transform
|
||||
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
|
||||
|
||||
def __repr__(self):
|
||||
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
|
||||
|
||||
def __len__(self):
|
||||
return len(self.paths)
|
||||
|
||||
def __getitem__(self, key):
|
||||
path = self.paths[key]
|
||||
with open(path, 'rb') as f:
|
||||
image = Image.open(f).convert('RGB')
|
||||
image = self.transform(image)
|
||||
return image,
|
||||
|
||||
|
||||
class CSVLogger:
|
||||
def __init__(self, filename, columns):
|
||||
self.filename = Path(filename)
|
||||
self.columns = columns
|
||||
if self.filename.exists():
|
||||
self.file = open(self.filename, 'a')
|
||||
else:
|
||||
self.file = open(self.filename, 'w')
|
||||
self.write(*self.columns)
|
||||
|
||||
def write(self, *args):
|
||||
print(*args, sep=',', file=self.file, flush=True)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def tf32_mode(cudnn=None, matmul=None):
|
||||
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
|
||||
cudnn_old = torch.backends.cudnn.allow_tf32
|
||||
matmul_old = torch.backends.cuda.matmul.allow_tf32
|
||||
try:
|
||||
if cudnn is not None:
|
||||
torch.backends.cudnn.allow_tf32 = cudnn
|
||||
if matmul is not None:
|
||||
torch.backends.cuda.matmul.allow_tf32 = matmul
|
||||
yield
|
||||
finally:
|
||||
if cudnn is not None:
|
||||
torch.backends.cudnn.allow_tf32 = cudnn_old
|
||||
if matmul is not None:
|
||||
torch.backends.cuda.matmul.allow_tf32 = matmul_old
|
||||
204
comfy/latent_formats.py
Normal file
204
comfy/latent_formats.py
Normal file
@@ -0,0 +1,204 @@
|
||||
import torch
|
||||
|
||||
class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
latent_channels = 4
|
||||
latent_rgb_factors = None
|
||||
latent_rgb_factors_bias = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
def process_in(self, latent):
|
||||
return latent * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return latent / self.scale_factor
|
||||
|
||||
class SD15(LatentFormat):
|
||||
def __init__(self, scale_factor=0.18215):
|
||||
self.scale_factor = scale_factor
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3512, 0.2297, 0.3227],
|
||||
[ 0.3250, 0.4974, 0.2350],
|
||||
[-0.2829, 0.1762, 0.2721],
|
||||
[-0.2120, -0.2616, -0.7177]
|
||||
]
|
||||
self.taesd_decoder_name = "taesd_decoder"
|
||||
|
||||
class SDXL(LatentFormat):
|
||||
scale_factor = 0.13025
|
||||
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3651, 0.4232, 0.4341],
|
||||
[-0.2533, -0.0042, 0.1068],
|
||||
[ 0.1076, 0.1111, -0.0362],
|
||||
[-0.3165, -0.2492, -0.2188]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
|
||||
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
class SDXL_Playground_2_5(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.5
|
||||
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
|
||||
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
|
||||
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3920, 0.4054, 0.4549],
|
||||
[-0.2634, -0.0196, 0.0653],
|
||||
[ 0.0568, 0.1687, -0.0755],
|
||||
[-0.3112, -0.2359, -0.2076]
|
||||
]
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return (latent - latents_mean) * self.scale_factor / latents_std
|
||||
|
||||
def process_out(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
|
||||
class SD_X4(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.08333
|
||||
self.latent_rgb_factors = [
|
||||
[-0.2340, -0.3863, -0.3257],
|
||||
[ 0.0994, 0.0885, -0.0908],
|
||||
[-0.2833, -0.2349, -0.3741],
|
||||
[ 0.2523, -0.0055, -0.1651]
|
||||
]
|
||||
|
||||
class SC_Prior(LatentFormat):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0326, -0.0204, -0.0127],
|
||||
[-0.1592, -0.0427, 0.0216],
|
||||
[ 0.0873, 0.0638, -0.0020],
|
||||
[-0.0602, 0.0442, 0.1304],
|
||||
[ 0.0800, -0.0313, -0.1796],
|
||||
[-0.0810, -0.0638, -0.1581],
|
||||
[ 0.1791, 0.1180, 0.0967],
|
||||
[ 0.0740, 0.1416, 0.0432],
|
||||
[-0.1745, -0.1888, -0.1373],
|
||||
[ 0.2412, 0.1577, 0.0928],
|
||||
[ 0.1908, 0.0998, 0.0682],
|
||||
[ 0.0209, 0.0365, -0.0092],
|
||||
[ 0.0448, -0.0650, -0.1728],
|
||||
[-0.1658, -0.1045, -0.1308],
|
||||
[ 0.0542, 0.1545, 0.1325],
|
||||
[-0.0352, -0.1672, -0.2541]
|
||||
]
|
||||
|
||||
class SC_B(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0 / 0.43
|
||||
self.latent_rgb_factors = [
|
||||
[ 0.1121, 0.2006, 0.1023],
|
||||
[-0.2093, -0.0222, -0.0195],
|
||||
[-0.3087, -0.1535, 0.0366],
|
||||
[ 0.0290, -0.1574, -0.4078]
|
||||
]
|
||||
|
||||
class SD3(LatentFormat):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.5305
|
||||
self.shift_factor = 0.0609
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0922, -0.0175, 0.0749],
|
||||
[ 0.0311, 0.0633, 0.0954],
|
||||
[ 0.1994, 0.0927, 0.0458],
|
||||
[ 0.0856, 0.0339, 0.0902],
|
||||
[ 0.0587, 0.0272, -0.0496],
|
||||
[-0.0006, 0.1104, 0.0309],
|
||||
[ 0.0978, 0.0306, 0.0427],
|
||||
[-0.0042, 0.1038, 0.1358],
|
||||
[-0.0194, 0.0020, 0.0669],
|
||||
[-0.0488, 0.0130, -0.0268],
|
||||
[ 0.0922, 0.0988, 0.0951],
|
||||
[-0.0278, 0.0524, -0.0542],
|
||||
[ 0.0332, 0.0456, 0.0895],
|
||||
[-0.0069, -0.0030, -0.0810],
|
||||
[-0.0596, -0.0465, -0.0293],
|
||||
[-0.1448, -0.1463, -0.1189]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
|
||||
self.taesd_decoder_name = "taesd3_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
return (latent - self.shift_factor) * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
class StableAudio1(LatentFormat):
|
||||
latent_channels = 64
|
||||
|
||||
class Flux(SD3):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.3611
|
||||
self.shift_factor = 0.1159
|
||||
self.latent_rgb_factors =[
|
||||
[-0.0346, 0.0244, 0.0681],
|
||||
[ 0.0034, 0.0210, 0.0687],
|
||||
[ 0.0275, -0.0668, -0.0433],
|
||||
[-0.0174, 0.0160, 0.0617],
|
||||
[ 0.0859, 0.0721, 0.0329],
|
||||
[ 0.0004, 0.0383, 0.0115],
|
||||
[ 0.0405, 0.0861, 0.0915],
|
||||
[-0.0236, -0.0185, -0.0259],
|
||||
[-0.0245, 0.0250, 0.1180],
|
||||
[ 0.1008, 0.0755, -0.0421],
|
||||
[-0.0515, 0.0201, 0.0011],
|
||||
[ 0.0428, -0.0012, -0.0036],
|
||||
[ 0.0817, 0.0765, 0.0749],
|
||||
[-0.1264, -0.0522, -0.1103],
|
||||
[-0.0280, -0.0881, -0.0499],
|
||||
[-0.1262, -0.0982, -0.0778]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.taesd_decoder_name = "taef1_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
return (latent - self.shift_factor) * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
class Mochi(LatentFormat):
|
||||
latent_channels = 12
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
|
||||
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
|
||||
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
|
||||
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
|
||||
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
|
||||
0.959253732819592, 0.8244560132752793, 0.917259975397747,
|
||||
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
|
||||
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
self.latent_rgb_factors = None #TODO
|
||||
self.taesd_decoder_name = None #TODO
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return (latent - latents_mean) * self.scale_factor / latents_std
|
||||
|
||||
def process_out(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
282
comfy/ldm/audio/autoencoder.py
Normal file
282
comfy/ldm/audio/autoencoder.py
Normal file
@@ -0,0 +1,282 @@
|
||||
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from typing import Literal, Dict, Any
|
||||
import math
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
def vae_sample(mean, scale):
|
||||
stdev = nn.functional.softplus(scale) + 1e-4
|
||||
var = stdev * stdev
|
||||
logvar = torch.log(var)
|
||||
latents = torch.randn_like(mean) * stdev + mean
|
||||
|
||||
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
||||
|
||||
return latents, kl
|
||||
|
||||
class VAEBottleneck(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.is_discrete = False
|
||||
|
||||
def encode(self, x, return_info=False, **kwargs):
|
||||
info = {}
|
||||
|
||||
mean, scale = x.chunk(2, dim=1)
|
||||
|
||||
x, kl = vae_sample(mean, scale)
|
||||
|
||||
info["kl"] = kl
|
||||
|
||||
if return_info:
|
||||
return x, info
|
||||
else:
|
||||
return x
|
||||
|
||||
def decode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
def snake_beta(x, alpha, beta):
|
||||
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
||||
|
||||
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
||||
class SnakeBeta(nn.Module):
|
||||
|
||||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
||||
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # linear scale alphas initialized to ones
|
||||
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
||||
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
# self.alpha.requires_grad = alpha_trainable
|
||||
# self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T]
|
||||
beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = snake_beta(x, alpha, beta)
|
||||
|
||||
return x
|
||||
|
||||
def WNConv1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
|
||||
def WNConvTranspose1d(*args, **kwargs):
|
||||
try:
|
||||
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
|
||||
except:
|
||||
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
|
||||
|
||||
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
||||
if activation == "elu":
|
||||
act = torch.nn.ELU()
|
||||
elif activation == "snake":
|
||||
act = SnakeBeta(channels)
|
||||
elif activation == "none":
|
||||
act = torch.nn.Identity()
|
||||
else:
|
||||
raise ValueError(f"Unknown activation {activation}")
|
||||
|
||||
if antialias:
|
||||
act = Activation1d(act)
|
||||
|
||||
return act
|
||||
|
||||
|
||||
class ResidualUnit(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
|
||||
super().__init__()
|
||||
|
||||
self.dilation = dilation
|
||||
|
||||
padding = (dilation * (7-1)) // 2
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
||||
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
||||
kernel_size=7, dilation=dilation, padding=padding),
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
||||
WNConv1d(in_channels=out_channels, out_channels=out_channels,
|
||||
kernel_size=1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
res = x
|
||||
|
||||
#x = checkpoint(self.layers, x)
|
||||
x = self.layers(x)
|
||||
|
||||
return x + res
|
||||
|
||||
class EncoderBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
|
||||
super().__init__()
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
ResidualUnit(in_channels=in_channels,
|
||||
out_channels=in_channels, dilation=1, use_snake=use_snake),
|
||||
ResidualUnit(in_channels=in_channels,
|
||||
out_channels=in_channels, dilation=3, use_snake=use_snake),
|
||||
ResidualUnit(in_channels=in_channels,
|
||||
out_channels=in_channels, dilation=9, use_snake=use_snake),
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
||||
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
||||
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
class DecoderBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
|
||||
super().__init__()
|
||||
|
||||
if use_nearest_upsample:
|
||||
upsample_layer = nn.Sequential(
|
||||
nn.Upsample(scale_factor=stride, mode="nearest"),
|
||||
WNConv1d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=2*stride,
|
||||
stride=1,
|
||||
bias=False,
|
||||
padding='same')
|
||||
)
|
||||
else:
|
||||
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
|
||||
|
||||
self.layers = nn.Sequential(
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
||||
upsample_layer,
|
||||
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
||||
dilation=1, use_snake=use_snake),
|
||||
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
||||
dilation=3, use_snake=use_snake),
|
||||
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
||||
dilation=9, use_snake=use_snake),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
class OobleckEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels=2,
|
||||
channels=128,
|
||||
latent_dim=32,
|
||||
c_mults = [1, 2, 4, 8],
|
||||
strides = [2, 4, 8, 8],
|
||||
use_snake=False,
|
||||
antialias_activation=False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
c_mults = [1] + c_mults
|
||||
|
||||
self.depth = len(c_mults)
|
||||
|
||||
layers = [
|
||||
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
|
||||
]
|
||||
|
||||
for i in range(self.depth-1):
|
||||
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
|
||||
|
||||
layers += [
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
|
||||
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
|
||||
]
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class OobleckDecoder(nn.Module):
|
||||
def __init__(self,
|
||||
out_channels=2,
|
||||
channels=128,
|
||||
latent_dim=32,
|
||||
c_mults = [1, 2, 4, 8],
|
||||
strides = [2, 4, 8, 8],
|
||||
use_snake=False,
|
||||
antialias_activation=False,
|
||||
use_nearest_upsample=False,
|
||||
final_tanh=True):
|
||||
super().__init__()
|
||||
|
||||
c_mults = [1] + c_mults
|
||||
|
||||
self.depth = len(c_mults)
|
||||
|
||||
layers = [
|
||||
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
|
||||
]
|
||||
|
||||
for i in range(self.depth-1, 0, -1):
|
||||
layers += [DecoderBlock(
|
||||
in_channels=c_mults[i]*channels,
|
||||
out_channels=c_mults[i-1]*channels,
|
||||
stride=strides[i-1],
|
||||
use_snake=use_snake,
|
||||
antialias_activation=antialias_activation,
|
||||
use_nearest_upsample=use_nearest_upsample
|
||||
)
|
||||
]
|
||||
|
||||
layers += [
|
||||
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
|
||||
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
|
||||
nn.Tanh() if final_tanh else nn.Identity()
|
||||
]
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class AudioOobleckVAE(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels=2,
|
||||
channels=128,
|
||||
latent_dim=64,
|
||||
c_mults = [1, 2, 4, 8, 16],
|
||||
strides = [2, 4, 4, 8, 8],
|
||||
use_snake=True,
|
||||
antialias_activation=False,
|
||||
use_nearest_upsample=False,
|
||||
final_tanh=False):
|
||||
super().__init__()
|
||||
self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation)
|
||||
self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation,
|
||||
use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh)
|
||||
self.bottleneck = VAEBottleneck()
|
||||
|
||||
def encode(self, x):
|
||||
return self.bottleneck.encode(self.encoder(x))
|
||||
|
||||
def decode(self, x):
|
||||
return self.decoder(self.bottleneck.decode(x))
|
||||
|
||||
891
comfy/ldm/audio/dit.py
Normal file
891
comfy/ldm/audio/dit.py
Normal file
@@ -0,0 +1,891 @@
|
||||
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import math
|
||||
import comfy.ops
|
||||
|
||||
class FourierFeatures(nn.Module):
|
||||
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
|
||||
super().__init__()
|
||||
assert out_features % 2 == 0
|
||||
self.weight = nn.Parameter(torch.empty(
|
||||
[out_features // 2, in_features], dtype=dtype, device=device))
|
||||
|
||||
def forward(self, input):
|
||||
f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
|
||||
return torch.cat([f.cos(), f.sin()], dim=-1)
|
||||
|
||||
# norms
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
|
||||
"""
|
||||
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
|
||||
|
||||
if bias:
|
||||
self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
|
||||
else:
|
||||
self.beta = None
|
||||
|
||||
def forward(self, x):
|
||||
beta = self.beta
|
||||
if beta is not None:
|
||||
beta = comfy.ops.cast_to_input(beta, x)
|
||||
return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_in,
|
||||
dim_out,
|
||||
activation,
|
||||
use_conv = False,
|
||||
conv_kernel_size = 3,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.act = activation
|
||||
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
|
||||
self.use_conv = use_conv
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_conv:
|
||||
x = rearrange(x, 'b n d -> b d n')
|
||||
x = self.proj(x)
|
||||
x = rearrange(x, 'b d n -> b n d')
|
||||
else:
|
||||
x = self.proj(x)
|
||||
|
||||
x, gate = x.chunk(2, dim = -1)
|
||||
return x * self.act(gate)
|
||||
|
||||
class AbsolutePositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_seq_len):
|
||||
super().__init__()
|
||||
self.scale = dim ** -0.5
|
||||
self.max_seq_len = max_seq_len
|
||||
self.emb = nn.Embedding(max_seq_len, dim)
|
||||
|
||||
def forward(self, x, pos = None, seq_start_pos = None):
|
||||
seq_len, device = x.shape[1], x.device
|
||||
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
||||
|
||||
if pos is None:
|
||||
pos = torch.arange(seq_len, device = device)
|
||||
|
||||
if seq_start_pos is not None:
|
||||
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
||||
|
||||
pos_emb = self.emb(pos)
|
||||
pos_emb = pos_emb * self.scale
|
||||
return pos_emb
|
||||
|
||||
class ScaledSinusoidalEmbedding(nn.Module):
|
||||
def __init__(self, dim, theta = 10000):
|
||||
super().__init__()
|
||||
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
||||
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
||||
|
||||
half_dim = dim // 2
|
||||
freq_seq = torch.arange(half_dim).float() / half_dim
|
||||
inv_freq = theta ** -freq_seq
|
||||
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
||||
|
||||
def forward(self, x, pos = None, seq_start_pos = None):
|
||||
seq_len, device = x.shape[1], x.device
|
||||
|
||||
if pos is None:
|
||||
pos = torch.arange(seq_len, device = device)
|
||||
|
||||
if seq_start_pos is not None:
|
||||
pos = pos - seq_start_pos[..., None]
|
||||
|
||||
emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
|
||||
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
||||
return emb * self.scale
|
||||
|
||||
class RotaryEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
use_xpos = False,
|
||||
scale_base = 512,
|
||||
interpolation_factor = 1.,
|
||||
base = 10000,
|
||||
base_rescale_factor = 1.,
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||
# has some connection to NTK literature
|
||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
base *= base_rescale_factor ** (dim / (dim - 2))
|
||||
|
||||
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
|
||||
|
||||
assert interpolation_factor >= 1.
|
||||
self.interpolation_factor = interpolation_factor
|
||||
|
||||
if not use_xpos:
|
||||
self.register_buffer('scale', None)
|
||||
return
|
||||
|
||||
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
||||
|
||||
self.scale_base = scale_base
|
||||
self.register_buffer('scale', scale)
|
||||
|
||||
def forward_from_seq_len(self, seq_len, device, dtype):
|
||||
# device = self.inv_freq.device
|
||||
|
||||
t = torch.arange(seq_len, device=device, dtype=dtype)
|
||||
return self.forward(t)
|
||||
|
||||
def forward(self, t):
|
||||
# device = self.inv_freq.device
|
||||
device = t.device
|
||||
dtype = t.dtype
|
||||
|
||||
# t = t.to(torch.float32)
|
||||
|
||||
t = t / self.interpolation_factor
|
||||
|
||||
freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
|
||||
freqs = torch.cat((freqs, freqs), dim = -1)
|
||||
|
||||
if self.scale is None:
|
||||
return freqs, 1.
|
||||
|
||||
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
||||
scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
|
||||
scale = torch.cat((scale, scale), dim = -1)
|
||||
|
||||
return freqs, scale
|
||||
|
||||
def rotate_half(x):
|
||||
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
||||
x1, x2 = x.unbind(dim = -2)
|
||||
return torch.cat((-x2, x1), dim = -1)
|
||||
|
||||
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
||||
out_dtype = t.dtype
|
||||
|
||||
# cast to float32 if necessary for numerical stability
|
||||
dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
||||
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
||||
freqs, t = freqs.to(dtype), t.to(dtype)
|
||||
freqs = freqs[-seq_len:, :]
|
||||
|
||||
if t.ndim == 4 and freqs.ndim == 3:
|
||||
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
||||
|
||||
# partial rotary embeddings, Wang et al. GPT-J
|
||||
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
||||
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
||||
|
||||
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
||||
|
||||
return torch.cat((t, t_unrotated), dim = -1)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out = None,
|
||||
mult = 4,
|
||||
no_bias = False,
|
||||
glu = True,
|
||||
use_conv = False,
|
||||
conv_kernel_size = 3,
|
||||
zero_init_output = True,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
|
||||
# Default to SwiGLU
|
||||
|
||||
activation = nn.SiLU()
|
||||
|
||||
dim_out = dim if dim_out is None else dim_out
|
||||
|
||||
if glu:
|
||||
linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
linear_in = nn.Sequential(
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
activation
|
||||
)
|
||||
|
||||
linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)
|
||||
|
||||
# # init last linear layer to 0
|
||||
# if zero_init_output:
|
||||
# nn.init.zeros_(linear_out.weight)
|
||||
# if not no_bias:
|
||||
# nn.init.zeros_(linear_out.bias)
|
||||
|
||||
|
||||
self.ff = nn.Sequential(
|
||||
linear_in,
|
||||
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
||||
linear_out,
|
||||
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.ff(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_heads = 64,
|
||||
dim_context = None,
|
||||
causal = False,
|
||||
zero_init_output=True,
|
||||
qk_norm = False,
|
||||
natten_kernel_size = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.dim_heads = dim_heads
|
||||
self.causal = causal
|
||||
|
||||
dim_kv = dim_context if dim_context is not None else dim
|
||||
|
||||
self.num_heads = dim // dim_heads
|
||||
self.kv_heads = dim_kv // dim_heads
|
||||
|
||||
if dim_context is not None:
|
||||
self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
|
||||
else:
|
||||
self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
# if zero_init_output:
|
||||
# nn.init.zeros_(self.to_out.weight)
|
||||
|
||||
self.qk_norm = qk_norm
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context = None,
|
||||
mask = None,
|
||||
context_mask = None,
|
||||
rotary_pos_emb = None,
|
||||
causal = None
|
||||
):
|
||||
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
||||
|
||||
kv_input = context if has_context else x
|
||||
|
||||
if hasattr(self, 'to_q'):
|
||||
# Use separate linear projections for q and k/v
|
||||
q = self.to_q(x)
|
||||
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
||||
|
||||
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
||||
|
||||
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
|
||||
else:
|
||||
# Use fused linear projection
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
||||
|
||||
# Normalize q and k for cosine sim attention
|
||||
if self.qk_norm:
|
||||
q = F.normalize(q, dim=-1)
|
||||
k = F.normalize(k, dim=-1)
|
||||
|
||||
if rotary_pos_emb is not None and not has_context:
|
||||
freqs, _ = rotary_pos_emb
|
||||
|
||||
q_dtype = q.dtype
|
||||
k_dtype = k.dtype
|
||||
|
||||
q = q.to(torch.float32)
|
||||
k = k.to(torch.float32)
|
||||
freqs = freqs.to(torch.float32)
|
||||
|
||||
q = apply_rotary_pos_emb(q, freqs)
|
||||
k = apply_rotary_pos_emb(k, freqs)
|
||||
|
||||
q = q.to(q_dtype)
|
||||
k = k.to(k_dtype)
|
||||
|
||||
input_mask = context_mask
|
||||
|
||||
if input_mask is None and not has_context:
|
||||
input_mask = mask
|
||||
|
||||
# determine masking
|
||||
masks = []
|
||||
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
||||
|
||||
if input_mask is not None:
|
||||
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
||||
masks.append(~input_mask)
|
||||
|
||||
# Other masks will be added here later
|
||||
|
||||
if len(masks) > 0:
|
||||
final_attn_mask = ~or_reduce(masks)
|
||||
|
||||
n, device = q.shape[-2], q.device
|
||||
|
||||
causal = self.causal if causal is None else causal
|
||||
|
||||
if n == 1 and causal:
|
||||
causal = False
|
||||
|
||||
if h != kv_h:
|
||||
# Repeat interleave kv_heads to match q_heads
|
||||
heads_per_kv_head = h // kv_h
|
||||
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
||||
|
||||
out = optimized_attention(q, k, v, h, skip_reshape=True)
|
||||
out = self.to_out(out)
|
||||
|
||||
if mask is not None:
|
||||
mask = rearrange(mask, 'b n -> b n 1')
|
||||
out = out.masked_fill(~mask, 0.)
|
||||
|
||||
return out
|
||||
|
||||
class ConformerModule(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
norm_kwargs = {},
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
|
||||
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
||||
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
||||
self.glu = GLU(dim, dim, nn.SiLU())
|
||||
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
||||
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
||||
self.swish = nn.SiLU()
|
||||
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.in_norm(x)
|
||||
x = rearrange(x, 'b n d -> b d n')
|
||||
x = self.pointwise_conv(x)
|
||||
x = rearrange(x, 'b d n -> b n d')
|
||||
x = self.glu(x)
|
||||
x = rearrange(x, 'b n d -> b d n')
|
||||
x = self.depthwise_conv(x)
|
||||
x = rearrange(x, 'b d n -> b n d')
|
||||
x = self.mid_norm(x)
|
||||
x = self.swish(x)
|
||||
x = rearrange(x, 'b n d -> b d n')
|
||||
x = self.pointwise_conv_2(x)
|
||||
x = rearrange(x, 'b d n -> b n d')
|
||||
|
||||
return x
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_heads = 64,
|
||||
cross_attend = False,
|
||||
dim_context = None,
|
||||
global_cond_dim = None,
|
||||
causal = False,
|
||||
zero_init_branch_outputs = True,
|
||||
conformer = False,
|
||||
layer_ix = -1,
|
||||
remove_norms = False,
|
||||
attn_kwargs = {},
|
||||
ff_kwargs = {},
|
||||
norm_kwargs = {},
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.dim_heads = dim_heads
|
||||
self.cross_attend = cross_attend
|
||||
self.dim_context = dim_context
|
||||
self.causal = causal
|
||||
|
||||
self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
||||
|
||||
self.self_attn = Attention(
|
||||
dim,
|
||||
dim_heads = dim_heads,
|
||||
causal = causal,
|
||||
zero_init_output=zero_init_branch_outputs,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
**attn_kwargs
|
||||
)
|
||||
|
||||
if cross_attend:
|
||||
self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
||||
self.cross_attn = Attention(
|
||||
dim,
|
||||
dim_heads = dim_heads,
|
||||
dim_context=dim_context,
|
||||
causal = causal,
|
||||
zero_init_output=zero_init_branch_outputs,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
**attn_kwargs
|
||||
)
|
||||
|
||||
self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
|
||||
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)
|
||||
|
||||
self.layer_ix = layer_ix
|
||||
|
||||
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
||||
|
||||
self.global_cond_dim = global_cond_dim
|
||||
|
||||
if global_cond_dim is not None:
|
||||
self.to_scale_shift_gate = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
||||
)
|
||||
|
||||
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
||||
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
context = None,
|
||||
global_cond=None,
|
||||
mask = None,
|
||||
context_mask = None,
|
||||
rotary_pos_emb = None
|
||||
):
|
||||
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
||||
|
||||
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
|
||||
|
||||
# self-attention with adaLN
|
||||
residual = x
|
||||
x = self.pre_norm(x)
|
||||
x = x * (1 + scale_self) + shift_self
|
||||
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
||||
x = x * torch.sigmoid(1 - gate_self)
|
||||
x = x + residual
|
||||
|
||||
if context is not None:
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
||||
|
||||
if self.conformer is not None:
|
||||
x = x + self.conformer(x)
|
||||
|
||||
# feedforward with adaLN
|
||||
residual = x
|
||||
x = self.ff_norm(x)
|
||||
x = x * (1 + scale_ff) + shift_ff
|
||||
x = self.ff(x)
|
||||
x = x * torch.sigmoid(1 - gate_ff)
|
||||
x = x + residual
|
||||
|
||||
else:
|
||||
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
||||
|
||||
if context is not None:
|
||||
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
||||
|
||||
if self.conformer is not None:
|
||||
x = x + self.conformer(x)
|
||||
|
||||
x = x + self.ff(self.ff_norm(x))
|
||||
|
||||
return x
|
||||
|
||||
class ContinuousTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
*,
|
||||
dim_in = None,
|
||||
dim_out = None,
|
||||
dim_heads = 64,
|
||||
cross_attend=False,
|
||||
cond_token_dim=None,
|
||||
global_cond_dim=None,
|
||||
causal=False,
|
||||
rotary_pos_emb=True,
|
||||
zero_init_branch_outputs=True,
|
||||
conformer=False,
|
||||
use_sinusoidal_emb=False,
|
||||
use_abs_pos_emb=False,
|
||||
abs_pos_emb_max_length=10000,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.depth = depth
|
||||
self.causal = causal
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
|
||||
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
|
||||
|
||||
if rotary_pos_emb:
|
||||
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
|
||||
else:
|
||||
self.rotary_pos_emb = None
|
||||
|
||||
self.use_sinusoidal_emb = use_sinusoidal_emb
|
||||
if use_sinusoidal_emb:
|
||||
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
||||
|
||||
self.use_abs_pos_emb = use_abs_pos_emb
|
||||
if use_abs_pos_emb:
|
||||
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
||||
|
||||
for i in range(depth):
|
||||
self.layers.append(
|
||||
TransformerBlock(
|
||||
dim,
|
||||
dim_heads = dim_heads,
|
||||
cross_attend = cross_attend,
|
||||
dim_context = cond_token_dim,
|
||||
global_cond_dim = global_cond_dim,
|
||||
causal = causal,
|
||||
zero_init_branch_outputs = zero_init_branch_outputs,
|
||||
conformer=conformer,
|
||||
layer_ix=i,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
**kwargs
|
||||
)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
mask = None,
|
||||
prepend_embeds = None,
|
||||
prepend_mask = None,
|
||||
global_cond = None,
|
||||
return_info = False,
|
||||
**kwargs
|
||||
):
|
||||
batch, seq, device = *x.shape[:2], x.device
|
||||
|
||||
info = {
|
||||
"hidden_states": [],
|
||||
}
|
||||
|
||||
x = self.project_in(x)
|
||||
|
||||
if prepend_embeds is not None:
|
||||
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
||||
|
||||
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
||||
|
||||
x = torch.cat((prepend_embeds, x), dim = -2)
|
||||
|
||||
if prepend_mask is not None or mask is not None:
|
||||
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
|
||||
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
|
||||
|
||||
mask = torch.cat((prepend_mask, mask), dim = -1)
|
||||
|
||||
# Attention layers
|
||||
|
||||
if self.rotary_pos_emb is not None:
|
||||
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
|
||||
else:
|
||||
rotary_pos_emb = None
|
||||
|
||||
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
||||
x = x + self.pos_emb(x)
|
||||
|
||||
# Iterate over the transformer layers
|
||||
for layer in self.layers:
|
||||
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
||||
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
||||
|
||||
if return_info:
|
||||
info["hidden_states"].append(x)
|
||||
|
||||
x = self.project_out(x)
|
||||
|
||||
if return_info:
|
||||
return x, info
|
||||
|
||||
return x
|
||||
|
||||
class AudioDiffusionTransformer(nn.Module):
|
||||
def __init__(self,
|
||||
io_channels=64,
|
||||
patch_size=1,
|
||||
embed_dim=1536,
|
||||
cond_token_dim=768,
|
||||
project_cond_tokens=False,
|
||||
global_cond_dim=1536,
|
||||
project_global_cond=True,
|
||||
input_concat_dim=0,
|
||||
prepend_cond_dim=0,
|
||||
depth=24,
|
||||
num_heads=24,
|
||||
transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
|
||||
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
||||
audio_model="",
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.dtype = dtype
|
||||
self.cond_token_dim = cond_token_dim
|
||||
|
||||
# Timestep embeddings
|
||||
timestep_features_dim = 256
|
||||
|
||||
self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)
|
||||
|
||||
self.to_timestep_embed = nn.Sequential(
|
||||
operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
if cond_token_dim > 0:
|
||||
# Conditioning tokens
|
||||
|
||||
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
|
||||
self.to_cond_embed = nn.Sequential(
|
||||
operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
|
||||
)
|
||||
else:
|
||||
cond_embed_dim = 0
|
||||
|
||||
if global_cond_dim > 0:
|
||||
# Global conditioning
|
||||
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
|
||||
self.to_global_embed = nn.Sequential(
|
||||
operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
if prepend_cond_dim > 0:
|
||||
# Prepend conditioning
|
||||
self.to_prepend_embed = nn.Sequential(
|
||||
operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
self.input_concat_dim = input_concat_dim
|
||||
|
||||
dim_in = io_channels + self.input_concat_dim
|
||||
|
||||
self.patch_size = patch_size
|
||||
|
||||
# Transformer
|
||||
|
||||
self.transformer_type = transformer_type
|
||||
|
||||
self.global_cond_type = global_cond_type
|
||||
|
||||
if self.transformer_type == "continuous_transformer":
|
||||
|
||||
global_dim = None
|
||||
|
||||
if self.global_cond_type == "adaLN":
|
||||
# The global conditioning is projected to the embed_dim already at this point
|
||||
global_dim = embed_dim
|
||||
|
||||
self.transformer = ContinuousTransformer(
|
||||
dim=embed_dim,
|
||||
depth=depth,
|
||||
dim_heads=embed_dim // num_heads,
|
||||
dim_in=dim_in * patch_size,
|
||||
dim_out=io_channels * patch_size,
|
||||
cross_attend = cond_token_dim > 0,
|
||||
cond_token_dim = cond_embed_dim,
|
||||
global_cond_dim=global_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
|
||||
|
||||
self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
|
||||
self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
mask=None,
|
||||
cross_attn_cond=None,
|
||||
cross_attn_cond_mask=None,
|
||||
input_concat_cond=None,
|
||||
global_embed=None,
|
||||
prepend_cond=None,
|
||||
prepend_cond_mask=None,
|
||||
return_info=False,
|
||||
**kwargs):
|
||||
|
||||
if cross_attn_cond is not None:
|
||||
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
||||
|
||||
if global_embed is not None:
|
||||
# Project the global conditioning to the embedding dimension
|
||||
global_embed = self.to_global_embed(global_embed)
|
||||
|
||||
prepend_inputs = None
|
||||
prepend_mask = None
|
||||
prepend_length = 0
|
||||
if prepend_cond is not None:
|
||||
# Project the prepend conditioning to the embedding dimension
|
||||
prepend_cond = self.to_prepend_embed(prepend_cond)
|
||||
|
||||
prepend_inputs = prepend_cond
|
||||
if prepend_cond_mask is not None:
|
||||
prepend_mask = prepend_cond_mask
|
||||
|
||||
if input_concat_cond is not None:
|
||||
|
||||
# Interpolate input_concat_cond to the same length as x
|
||||
if input_concat_cond.shape[2] != x.shape[2]:
|
||||
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
|
||||
|
||||
x = torch.cat([x, input_concat_cond], dim=1)
|
||||
|
||||
# Get the batch of timestep embeddings
|
||||
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)
|
||||
|
||||
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
||||
if global_embed is not None:
|
||||
global_embed = global_embed + timestep_embed
|
||||
else:
|
||||
global_embed = timestep_embed
|
||||
|
||||
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
||||
if self.global_cond_type == "prepend":
|
||||
if prepend_inputs is None:
|
||||
# Prepend inputs are just the global embed, and the mask is all ones
|
||||
prepend_inputs = global_embed.unsqueeze(1)
|
||||
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
||||
else:
|
||||
# Prepend inputs are the prepend conditioning + the global embed
|
||||
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
||||
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
|
||||
|
||||
prepend_length = prepend_inputs.shape[1]
|
||||
|
||||
x = self.preprocess_conv(x) + x
|
||||
|
||||
x = rearrange(x, "b c t -> b t c")
|
||||
|
||||
extra_args = {}
|
||||
|
||||
if self.global_cond_type == "adaLN":
|
||||
extra_args["global_cond"] = global_embed
|
||||
|
||||
if self.patch_size > 1:
|
||||
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
||||
|
||||
if self.transformer_type == "x-transformers":
|
||||
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
|
||||
elif self.transformer_type == "continuous_transformer":
|
||||
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
|
||||
|
||||
if return_info:
|
||||
output, info = output
|
||||
elif self.transformer_type == "mm_transformer":
|
||||
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
|
||||
|
||||
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
|
||||
|
||||
if self.patch_size > 1:
|
||||
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
||||
|
||||
output = self.postprocess_conv(output) + output
|
||||
|
||||
if return_info:
|
||||
return output, info
|
||||
|
||||
return output
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timestep,
|
||||
context=None,
|
||||
context_mask=None,
|
||||
input_concat_cond=None,
|
||||
global_embed=None,
|
||||
negative_global_embed=None,
|
||||
prepend_cond=None,
|
||||
prepend_cond_mask=None,
|
||||
mask=None,
|
||||
return_info=False,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
**kwargs):
|
||||
return self._forward(
|
||||
x,
|
||||
timestep,
|
||||
cross_attn_cond=context,
|
||||
cross_attn_cond_mask=context_mask,
|
||||
input_concat_cond=input_concat_cond,
|
||||
global_embed=global_embed,
|
||||
prepend_cond=prepend_cond,
|
||||
prepend_cond_mask=prepend_cond_mask,
|
||||
mask=mask,
|
||||
return_info=return_info,
|
||||
**kwargs
|
||||
)
|
||||
108
comfy/ldm/audio/embedders.py
Normal file
108
comfy/ldm/audio/embedders.py
Normal file
@@ -0,0 +1,108 @@
|
||||
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor, einsum
|
||||
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
||||
from einops import rearrange
|
||||
import math
|
||||
import comfy.ops
|
||||
|
||||
class LearnedPositionalEmbedding(nn.Module):
|
||||
"""Used for continuous time"""
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
assert (dim % 2) == 0
|
||||
half_dim = dim // 2
|
||||
self.weights = nn.Parameter(torch.empty(half_dim))
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = rearrange(x, "b -> b 1")
|
||||
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi
|
||||
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
||||
fouriered = torch.cat((x, fouriered), dim=-1)
|
||||
return fouriered
|
||||
|
||||
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
||||
return nn.Sequential(
|
||||
LearnedPositionalEmbedding(dim),
|
||||
comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features),
|
||||
)
|
||||
|
||||
|
||||
class NumberEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
features: int,
|
||||
dim: int = 256,
|
||||
):
|
||||
super().__init__()
|
||||
self.features = features
|
||||
self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
|
||||
|
||||
def forward(self, x: Union[List[float], Tensor]) -> Tensor:
|
||||
if not torch.is_tensor(x):
|
||||
device = next(self.embedding.parameters()).device
|
||||
x = torch.tensor(x, device=device)
|
||||
assert isinstance(x, Tensor)
|
||||
shape = x.shape
|
||||
x = rearrange(x, "... -> (...)")
|
||||
embedding = self.embedding(x)
|
||||
x = embedding.view(*shape, self.features)
|
||||
return x # type: ignore
|
||||
|
||||
|
||||
class Conditioner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
output_dim: int,
|
||||
project_out: bool = False
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.output_dim = output_dim
|
||||
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
raise NotImplementedError()
|
||||
|
||||
class NumberConditioner(Conditioner):
|
||||
'''
|
||||
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
|
||||
'''
|
||||
def __init__(self,
|
||||
output_dim: int,
|
||||
min_val: float=0,
|
||||
max_val: float=1
|
||||
):
|
||||
super().__init__(output_dim, output_dim)
|
||||
|
||||
self.min_val = min_val
|
||||
self.max_val = max_val
|
||||
|
||||
self.embedder = NumberEmbedder(features=output_dim)
|
||||
|
||||
def forward(self, floats, device=None):
|
||||
# Cast the inputs to floats
|
||||
floats = [float(x) for x in floats]
|
||||
|
||||
if device is None:
|
||||
device = next(self.embedder.parameters()).device
|
||||
|
||||
floats = torch.tensor(floats).to(device)
|
||||
|
||||
floats = floats.clamp(self.min_val, self.max_val)
|
||||
|
||||
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
|
||||
|
||||
# Cast floats to same type as embedder
|
||||
embedder_dtype = next(self.embedder.parameters()).dtype
|
||||
normalized_floats = normalized_floats.to(embedder_dtype)
|
||||
|
||||
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
|
||||
|
||||
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
|
||||
478
comfy/ldm/aura/mmdit.py
Normal file
478
comfy/ldm/aura/mmdit.py
Normal file
@@ -0,0 +1,478 @@
|
||||
#AuraFlow MMDiT
|
||||
#Originally written by the AuraFlow Authors
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
def find_multiple(n: int, k: int) -> int:
|
||||
if n % k == 0:
|
||||
return n
|
||||
return n + k - (n % k)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim=None, dtype=None, device=None, operations=None) -> None:
|
||||
super().__init__()
|
||||
if hidden_dim is None:
|
||||
hidden_dim = 4 * dim
|
||||
|
||||
n_hidden = int(2 * hidden_dim / 3)
|
||||
n_hidden = find_multiple(n_hidden, 256)
|
||||
|
||||
self.c_fc1 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
|
||||
self.c_fc2 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
|
||||
self.c_proj = operations.Linear(n_hidden, dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
|
||||
x = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadLayerNorm(nn.Module):
|
||||
def __init__(self, hidden_size=None, eps=1e-5, dtype=None, device=None):
|
||||
# Copy pasta from https://github.com/huggingface/transformers/blob/e5f71ecaae50ea476d1e12351003790273c4b2ed/src/transformers/models/cohere/modeling_cohere.py#L78
|
||||
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
mean = hidden_states.mean(-1, keepdim=True)
|
||||
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = (hidden_states - mean) * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
hidden_states = self.weight.to(torch.float32) * hidden_states
|
||||
return hidden_states.to(input_dtype)
|
||||
|
||||
class SingleAttention(nn.Module):
|
||||
def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.n_heads = n_heads
|
||||
self.head_dim = dim // n_heads
|
||||
|
||||
# this is for cond
|
||||
self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.q_norm1 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
self.k_norm1 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c):
|
||||
|
||||
bsz, seqlen1, _ = c.shape
|
||||
|
||||
q, k, v = self.w1q(c), self.w1k(c), self.w1v(c)
|
||||
q = q.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
k = k.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
q, k = self.q_norm1(q), self.k_norm1(k)
|
||||
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
||||
c = self.w1o(output)
|
||||
return c
|
||||
|
||||
|
||||
|
||||
class DoubleAttention(nn.Module):
|
||||
def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.n_heads = n_heads
|
||||
self.head_dim = dim // n_heads
|
||||
|
||||
# this is for cond
|
||||
self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
# this is for x
|
||||
self.w2q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w2k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w2v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
self.w2o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.q_norm1 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
self.k_norm1 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
self.q_norm2 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
self.k_norm2 = (
|
||||
MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
|
||||
if mh_qknorm
|
||||
else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c, x):
|
||||
|
||||
bsz, seqlen1, _ = c.shape
|
||||
bsz, seqlen2, _ = x.shape
|
||||
seqlen = seqlen1 + seqlen2
|
||||
|
||||
cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c)
|
||||
cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
ck = ck.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
cv = cv.view(bsz, seqlen1, self.n_heads, self.head_dim)
|
||||
cq, ck = self.q_norm1(cq), self.k_norm1(ck)
|
||||
|
||||
xq, xk, xv = self.w2q(x), self.w2k(x), self.w2v(x)
|
||||
xq = xq.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
||||
xk = xk.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
||||
xv = xv.view(bsz, seqlen2, self.n_heads, self.head_dim)
|
||||
xq, xk = self.q_norm2(xq), self.k_norm2(xk)
|
||||
|
||||
# concat all
|
||||
q, k, v = (
|
||||
torch.cat([cq, xq], dim=1),
|
||||
torch.cat([ck, xk], dim=1),
|
||||
torch.cat([cv, xv], dim=1),
|
||||
)
|
||||
|
||||
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
|
||||
|
||||
c, x = output.split([seqlen1, seqlen2], dim=1)
|
||||
c = self.w1o(c)
|
||||
x = self.w2o(x)
|
||||
|
||||
return c, x
|
||||
|
||||
|
||||
class MMDiTBlock(nn.Module):
|
||||
def __init__(self, dim, heads=8, global_conddim=1024, is_last=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.normC1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
self.normC2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
if not is_last:
|
||||
self.mlpC = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
||||
self.modC = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
else:
|
||||
self.modC = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.normX1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
self.normX2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
self.mlpX = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
||||
self.modX = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.attn = DoubleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
|
||||
self.is_last = is_last
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, c, x, global_cond, **kwargs):
|
||||
|
||||
cres, xres = c, x
|
||||
|
||||
cshift_msa, cscale_msa, cgate_msa, cshift_mlp, cscale_mlp, cgate_mlp = (
|
||||
self.modC(global_cond).chunk(6, dim=1)
|
||||
)
|
||||
|
||||
c = modulate(self.normC1(c), cshift_msa, cscale_msa)
|
||||
|
||||
# xpath
|
||||
xshift_msa, xscale_msa, xgate_msa, xshift_mlp, xscale_mlp, xgate_mlp = (
|
||||
self.modX(global_cond).chunk(6, dim=1)
|
||||
)
|
||||
|
||||
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
|
||||
|
||||
# attention
|
||||
c, x = self.attn(c, x)
|
||||
|
||||
|
||||
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
|
||||
c = cgate_mlp.unsqueeze(1) * self.mlpC(modulate(c, cshift_mlp, cscale_mlp))
|
||||
c = cres + c
|
||||
|
||||
x = self.normX2(xres + xgate_msa.unsqueeze(1) * x)
|
||||
x = xgate_mlp.unsqueeze(1) * self.mlpX(modulate(x, xshift_mlp, xscale_mlp))
|
||||
x = xres + x
|
||||
|
||||
return c, x
|
||||
|
||||
class DiTBlock(nn.Module):
|
||||
# like MMDiTBlock, but it only has X
|
||||
def __init__(self, dim, heads=8, global_conddim=1024, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
self.norm2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
|
||||
|
||||
self.modCX = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.attn = SingleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
|
||||
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, cx, global_cond, **kwargs):
|
||||
cxres = cx
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
|
||||
global_cond
|
||||
).chunk(6, dim=1)
|
||||
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
|
||||
cx = self.attn(cx)
|
||||
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
|
||||
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
|
||||
cx = gate_mlp.unsqueeze(1) * mlpout
|
||||
|
||||
cx = cxres + cx
|
||||
|
||||
return cx
|
||||
|
||||
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(frequency_embedding_size, hidden_size, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
half = dim // 2
|
||||
freqs = 1000 * torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half) / half
|
||||
).to(t.device)
|
||||
args = t[:, None] * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
return embedding
|
||||
|
||||
#@torch.compile()
|
||||
def forward(self, t, dtype):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class MMDiT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
patch_size=2,
|
||||
dim=3072,
|
||||
n_layers=36,
|
||||
n_double_layers=4,
|
||||
n_heads=12,
|
||||
global_conddim=3072,
|
||||
cond_seq_dim=2048,
|
||||
max_seq=32 * 32,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
|
||||
self.t_embedder = TimestepEmbedder(global_conddim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.cond_seq_linear = operations.Linear(
|
||||
cond_seq_dim, dim, bias=False, dtype=dtype, device=device
|
||||
) # linear for something like text sequence.
|
||||
self.init_x_linear = operations.Linear(
|
||||
patch_size * patch_size * in_channels, dim, dtype=dtype, device=device
|
||||
) # init linear for patchified image.
|
||||
|
||||
self.positional_encoding = nn.Parameter(torch.empty(1, max_seq, dim, dtype=dtype, device=device))
|
||||
self.register_tokens = nn.Parameter(torch.empty(1, 8, dim, dtype=dtype, device=device))
|
||||
|
||||
self.double_layers = nn.ModuleList([])
|
||||
self.single_layers = nn.ModuleList([])
|
||||
|
||||
|
||||
for idx in range(n_double_layers):
|
||||
self.double_layers.append(
|
||||
MMDiTBlock(dim, n_heads, global_conddim, is_last=(idx == n_layers - 1), dtype=dtype, device=device, operations=operations)
|
||||
)
|
||||
|
||||
for idx in range(n_double_layers, n_layers):
|
||||
self.single_layers.append(
|
||||
DiTBlock(dim, n_heads, global_conddim, dtype=dtype, device=device, operations=operations)
|
||||
)
|
||||
|
||||
|
||||
self.final_linear = operations.Linear(
|
||||
dim, patch_size * patch_size * out_channels, bias=False, dtype=dtype, device=device
|
||||
)
|
||||
|
||||
self.modF = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.out_channels = out_channels
|
||||
self.patch_size = patch_size
|
||||
self.n_double_layers = n_double_layers
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.h_max = round(max_seq**0.5)
|
||||
self.w_max = round(max_seq**0.5)
|
||||
|
||||
@torch.no_grad()
|
||||
def extend_pe(self, init_dim=(16, 16), target_dim=(64, 64)):
|
||||
# extend pe
|
||||
pe_data = self.positional_encoding.data.squeeze(0)[: init_dim[0] * init_dim[1]]
|
||||
|
||||
pe_as_2d = pe_data.view(init_dim[0], init_dim[1], -1).permute(2, 0, 1)
|
||||
|
||||
# now we need to extend this to target_dim. for this we will use interpolation.
|
||||
# we will use torch.nn.functional.interpolate
|
||||
pe_as_2d = F.interpolate(
|
||||
pe_as_2d.unsqueeze(0), size=target_dim, mode="bilinear"
|
||||
)
|
||||
pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
|
||||
self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
|
||||
self.h_max, self.w_max = target_dim
|
||||
print("PE extended to", target_dim)
|
||||
|
||||
def pe_selection_index_based_on_dim(self, h, w):
|
||||
h_p, w_p = h // self.patch_size, w // self.patch_size
|
||||
original_pe_indexes = torch.arange(self.positional_encoding.shape[1])
|
||||
original_pe_indexes = original_pe_indexes.view(self.h_max, self.w_max)
|
||||
starth = self.h_max // 2 - h_p // 2
|
||||
endh =starth + h_p
|
||||
startw = self.w_max // 2 - w_p // 2
|
||||
endw = startw + w_p
|
||||
original_pe_indexes = original_pe_indexes[
|
||||
starth:endh, startw:endw
|
||||
]
|
||||
return original_pe_indexes.flatten()
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
c = self.out_channels
|
||||
p = self.patch_size
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum("nhwpqc->nchpwq", x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
|
||||
def patchify(self, x):
|
||||
B, C, H, W = x.size()
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
x = x.view(
|
||||
B,
|
||||
C,
|
||||
(H + 1) // self.patch_size,
|
||||
self.patch_size,
|
||||
(W + 1) // self.patch_size,
|
||||
self.patch_size,
|
||||
)
|
||||
x = x.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
|
||||
return x
|
||||
|
||||
def apply_pos_embeds(self, x, h, w):
|
||||
h = (h + 1) // self.patch_size
|
||||
w = (w + 1) // self.patch_size
|
||||
max_dim = max(h, w)
|
||||
|
||||
cur_dim = self.h_max
|
||||
pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)
|
||||
|
||||
if max_dim > cur_dim:
|
||||
pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
|
||||
cur_dim = max_dim
|
||||
|
||||
from_h = (cur_dim - h) // 2
|
||||
from_w = (cur_dim - w) // 2
|
||||
pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w]
|
||||
return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])
|
||||
|
||||
def forward(self, x, timestep, context, **kwargs):
|
||||
# patchify x, add PE
|
||||
b, c, h, w = x.shape
|
||||
|
||||
# pe_indexes = self.pe_selection_index_based_on_dim(h, w)
|
||||
# print(pe_indexes, pe_indexes.shape)
|
||||
|
||||
x = self.init_x_linear(self.patchify(x)) # B, T_x, D
|
||||
x = self.apply_pos_embeds(x, h, w)
|
||||
# x = x + self.positional_encoding[:, : x.size(1)].to(device=x.device, dtype=x.dtype)
|
||||
# x = x + self.positional_encoding[:, pe_indexes].to(device=x.device, dtype=x.dtype)
|
||||
|
||||
# process conditions for MMDiT Blocks
|
||||
c_seq = context # B, T_c, D_c
|
||||
t = timestep
|
||||
|
||||
c = self.cond_seq_linear(c_seq) # B, T_c, D
|
||||
c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)
|
||||
|
||||
global_cond = self.t_embedder(t, x.dtype) # B, D
|
||||
|
||||
if len(self.double_layers) > 0:
|
||||
for layer in self.double_layers:
|
||||
c, x = layer(c, x, global_cond, **kwargs)
|
||||
|
||||
if len(self.single_layers) > 0:
|
||||
c_len = c.size(1)
|
||||
cx = torch.cat([c, x], dim=1)
|
||||
for layer in self.single_layers:
|
||||
cx = layer(cx, global_cond, **kwargs)
|
||||
|
||||
x = cx[:, c_len:]
|
||||
|
||||
fshift, fscale = self.modF(global_cond).chunk(2, dim=1)
|
||||
|
||||
x = modulate(x, fshift, fscale)
|
||||
x = self.final_linear(x)
|
||||
x = self.unpatchify(x, (h + 1) // self.patch_size, (w + 1) // self.patch_size)[:,:,:h,:w]
|
||||
return x
|
||||
154
comfy/ldm/cascade/common.py
Normal file
154
comfy/ldm/cascade/common.py
Normal file
@@ -0,0 +1,154 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
|
||||
class OptimizedAttention(nn.Module):
|
||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.heads = nhead
|
||||
|
||||
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, q, k, v):
|
||||
q = self.to_q(q)
|
||||
k = self.to_k(k)
|
||||
v = self.to_v(v)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads)
|
||||
|
||||
return self.out_proj(out)
|
||||
|
||||
class Attention2D(nn.Module):
|
||||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
|
||||
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, kv, self_attn=False):
|
||||
orig_shape = x.shape
|
||||
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
||||
if self_attn:
|
||||
kv = torch.cat([x, kv], dim=1)
|
||||
# x = self.attn(x, kv, kv, need_weights=False)[0]
|
||||
x = self.attn(x, kv, kv)
|
||||
x = x.permute(0, 2, 1).view(*orig_shape)
|
||||
return x
|
||||
|
||||
|
||||
def LayerNorm2d_op(operations):
|
||||
class LayerNorm2d(operations.LayerNorm):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
||||
return LayerNorm2d
|
||||
|
||||
class GlobalResponseNorm(nn.Module):
|
||||
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
||||
def __init__(self, dim, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x):
|
||||
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
|
||||
super().__init__()
|
||||
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
|
||||
# self.depthwise = SAMBlock(c, num_heads, expansion)
|
||||
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.channelwise = nn.Sequential(
|
||||
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout),
|
||||
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, x_skip=None):
|
||||
x_res = x
|
||||
x = self.norm(self.depthwise(x))
|
||||
if x_skip is not None:
|
||||
x = torch.cat([x, x_skip], dim=1)
|
||||
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
||||
return x + x_res
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.self_attn = self_attn
|
||||
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
|
||||
self.kv_mapper = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_cond, c, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, kv):
|
||||
kv = self.kv_mapper(kv)
|
||||
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
|
||||
return x
|
||||
|
||||
|
||||
class FeedForwardBlock(nn.Module):
|
||||
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.channelwise = nn.Sequential(
|
||||
operations.Linear(c, c * 4, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout),
|
||||
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
|
||||
self.conds = conds
|
||||
for cname in conds:
|
||||
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x, t):
|
||||
t = t.chunk(len(self.conds) + 1, dim=1)
|
||||
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
|
||||
for i, c in enumerate(self.conds):
|
||||
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
|
||||
a, b = a + ac, b + bc
|
||||
return x * (1 + a) + b
|
||||
93
comfy/ldm/cascade/controlnet.py
Normal file
93
comfy/ldm/cascade/controlnet.py
Normal file
@@ -0,0 +1,93 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from .common import LayerNorm2d_op
|
||||
|
||||
|
||||
class CNetResBlock(nn.Module):
|
||||
def __init__(self, c, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.blocks = nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
||||
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.blocks(x)
|
||||
|
||||
|
||||
class ControlNet(nn.Module):
|
||||
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
|
||||
super().__init__()
|
||||
if bottleneck_mode is None:
|
||||
bottleneck_mode = 'effnet'
|
||||
self.proj_blocks = proj_blocks
|
||||
if bottleneck_mode == 'effnet':
|
||||
embd_channels = 1280
|
||||
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
||||
if c_in != 3:
|
||||
in_weights = self.backbone[0][0].weight.data
|
||||
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
|
||||
if c_in > 3:
|
||||
# nn.init.constant_(self.backbone[0][0].weight, 0)
|
||||
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
|
||||
else:
|
||||
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
|
||||
elif bottleneck_mode == 'simple':
|
||||
embd_channels = c_in
|
||||
self.backbone = nn.Sequential(
|
||||
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
|
||||
)
|
||||
elif bottleneck_mode == 'large':
|
||||
self.backbone = nn.Sequential(
|
||||
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
|
||||
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
|
||||
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
|
||||
)
|
||||
embd_channels = 1280
|
||||
else:
|
||||
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
|
||||
self.projections = nn.ModuleList()
|
||||
for _ in range(len(proj_blocks)):
|
||||
self.projections.append(nn.Sequential(
|
||||
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
|
||||
))
|
||||
# nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
|
||||
self.xl = False
|
||||
self.input_channels = c_in
|
||||
self.unshuffle_amount = 8
|
||||
|
||||
def forward(self, x):
|
||||
x = self.backbone(x)
|
||||
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
|
||||
for i, idx in enumerate(self.proj_blocks):
|
||||
proj_outputs[idx] = self.projections[i](x)
|
||||
return {"input": proj_outputs[::-1]}
|
||||
255
comfy/ldm/cascade/stage_a.py
Normal file
255
comfy/ldm/cascade/stage_a.py
Normal file
@@ -0,0 +1,255 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Function
|
||||
|
||||
class vector_quantize(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x, codebook):
|
||||
with torch.no_grad():
|
||||
codebook_sqr = torch.sum(codebook ** 2, dim=1)
|
||||
x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
|
||||
|
||||
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
|
||||
_, indices = dist.min(dim=1)
|
||||
|
||||
ctx.save_for_backward(indices, codebook)
|
||||
ctx.mark_non_differentiable(indices)
|
||||
|
||||
nn = torch.index_select(codebook, 0, indices)
|
||||
return nn, indices
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output, grad_indices):
|
||||
grad_inputs, grad_codebook = None, None
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_inputs = grad_output.clone()
|
||||
if ctx.needs_input_grad[1]:
|
||||
# Gradient wrt. the codebook
|
||||
indices, codebook = ctx.saved_tensors
|
||||
|
||||
grad_codebook = torch.zeros_like(codebook)
|
||||
grad_codebook.index_add_(0, indices, grad_output)
|
||||
|
||||
return (grad_inputs, grad_codebook)
|
||||
|
||||
|
||||
class VectorQuantize(nn.Module):
|
||||
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
|
||||
"""
|
||||
Takes an input of variable size (as long as the last dimension matches the embedding size).
|
||||
Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
|
||||
with the same size as the input, vq and commitment components for the loss as a touple
|
||||
in the second output and the indices of the quantized vectors in the third:
|
||||
quantized, (vq_loss, commit_loss), indices
|
||||
"""
|
||||
super(VectorQuantize, self).__init__()
|
||||
|
||||
self.codebook = nn.Embedding(k, embedding_size)
|
||||
self.codebook.weight.data.uniform_(-1./k, 1./k)
|
||||
self.vq = vector_quantize.apply
|
||||
|
||||
self.ema_decay = ema_decay
|
||||
self.ema_loss = ema_loss
|
||||
if ema_loss:
|
||||
self.register_buffer('ema_element_count', torch.ones(k))
|
||||
self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
|
||||
|
||||
def _laplace_smoothing(self, x, epsilon):
|
||||
n = torch.sum(x)
|
||||
return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
|
||||
|
||||
def _updateEMA(self, z_e_x, indices):
|
||||
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
|
||||
elem_count = mask.sum(dim=0)
|
||||
weight_sum = torch.mm(mask.t(), z_e_x)
|
||||
|
||||
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
|
||||
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
|
||||
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
|
||||
|
||||
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
|
||||
|
||||
def idx2vq(self, idx, dim=-1):
|
||||
q_idx = self.codebook(idx)
|
||||
if dim != -1:
|
||||
q_idx = q_idx.movedim(-1, dim)
|
||||
return q_idx
|
||||
|
||||
def forward(self, x, get_losses=True, dim=-1):
|
||||
if dim != -1:
|
||||
x = x.movedim(dim, -1)
|
||||
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
|
||||
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
|
||||
vq_loss, commit_loss = None, None
|
||||
if self.ema_loss and self.training:
|
||||
self._updateEMA(z_e_x.detach(), indices.detach())
|
||||
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
|
||||
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
|
||||
if get_losses:
|
||||
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
|
||||
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
|
||||
|
||||
z_q_x = z_q_x.view(x.shape)
|
||||
if dim != -1:
|
||||
z_q_x = z_q_x.movedim(-1, dim)
|
||||
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, c, c_hidden):
|
||||
super().__init__()
|
||||
# depthwise/attention
|
||||
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.depthwise = nn.Sequential(
|
||||
nn.ReplicationPad2d(1),
|
||||
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
||||
)
|
||||
|
||||
# channelwise
|
||||
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.channelwise = nn.Sequential(
|
||||
nn.Linear(c, c_hidden),
|
||||
nn.GELU(),
|
||||
nn.Linear(c_hidden, c),
|
||||
)
|
||||
|
||||
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
||||
|
||||
# Init weights
|
||||
def _basic_init(module):
|
||||
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
||||
torch.nn.init.xavier_uniform_(module.weight)
|
||||
if module.bias is not None:
|
||||
nn.init.constant_(module.bias, 0)
|
||||
|
||||
self.apply(_basic_init)
|
||||
|
||||
def _norm(self, x, norm):
|
||||
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
||||
|
||||
def forward(self, x):
|
||||
mods = self.gammas
|
||||
|
||||
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
|
||||
try:
|
||||
x = x + self.depthwise(x_temp) * mods[2]
|
||||
except: #operation not implemented for bf16
|
||||
x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
|
||||
x = x + self.depthwise[1](x_temp) * mods[2]
|
||||
|
||||
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
|
||||
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class StageA(nn.Module):
|
||||
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192):
|
||||
super().__init__()
|
||||
self.c_latent = c_latent
|
||||
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
|
||||
|
||||
# Encoder blocks
|
||||
self.in_block = nn.Sequential(
|
||||
nn.PixelUnshuffle(2),
|
||||
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
||||
)
|
||||
down_blocks = []
|
||||
for i in range(levels):
|
||||
if i > 0:
|
||||
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
||||
block = ResBlock(c_levels[i], c_levels[i] * 4)
|
||||
down_blocks.append(block)
|
||||
down_blocks.append(nn.Sequential(
|
||||
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
||||
))
|
||||
self.down_blocks = nn.Sequential(*down_blocks)
|
||||
self.down_blocks[0]
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
|
||||
|
||||
# Decoder blocks
|
||||
up_blocks = [nn.Sequential(
|
||||
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
||||
)]
|
||||
for i in range(levels):
|
||||
for j in range(bottleneck_blocks if i == 0 else 1):
|
||||
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
|
||||
up_blocks.append(block)
|
||||
if i < levels - 1:
|
||||
up_blocks.append(
|
||||
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
||||
padding=1))
|
||||
self.up_blocks = nn.Sequential(*up_blocks)
|
||||
self.out_block = nn.Sequential(
|
||||
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
||||
nn.PixelShuffle(2),
|
||||
)
|
||||
|
||||
def encode(self, x, quantize=False):
|
||||
x = self.in_block(x)
|
||||
x = self.down_blocks(x)
|
||||
if quantize:
|
||||
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
|
||||
return qe, x, indices, vq_loss + commit_loss * 0.25
|
||||
else:
|
||||
return x
|
||||
|
||||
def decode(self, x):
|
||||
x = self.up_blocks(x)
|
||||
x = self.out_block(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, quantize=False):
|
||||
qe, x, _, vq_loss = self.encode(x, quantize)
|
||||
x = self.decode(qe)
|
||||
return x, vq_loss
|
||||
|
||||
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
|
||||
super().__init__()
|
||||
d = max(depth - 3, 3)
|
||||
layers = [
|
||||
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
||||
nn.LeakyReLU(0.2),
|
||||
]
|
||||
for i in range(depth - 1):
|
||||
c_in = c_hidden // (2 ** max((d - i), 0))
|
||||
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
|
||||
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
||||
layers.append(nn.InstanceNorm2d(c_out))
|
||||
layers.append(nn.LeakyReLU(0.2))
|
||||
self.encoder = nn.Sequential(*layers)
|
||||
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
||||
self.logits = nn.Sigmoid()
|
||||
|
||||
def forward(self, x, cond=None):
|
||||
x = self.encoder(x)
|
||||
if cond is not None:
|
||||
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
|
||||
x = torch.cat([x, cond], dim=1)
|
||||
x = self.shuffle(x)
|
||||
x = self.logits(x)
|
||||
return x
|
||||
256
comfy/ldm/cascade/stage_b.py
Normal file
256
comfy/ldm/cascade/stage_b.py
Normal file
@@ -0,0 +1,256 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
||||
|
||||
class StageB(nn.Module):
|
||||
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
|
||||
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
|
||||
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
|
||||
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
|
||||
t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.c_r = c_r
|
||||
self.t_conds = t_conds
|
||||
self.c_clip_seq = c_clip_seq
|
||||
if not isinstance(dropout, list):
|
||||
dropout = [dropout] * len(c_hidden)
|
||||
if not isinstance(self_attn, list):
|
||||
self_attn = [self_attn] * len(c_hidden)
|
||||
|
||||
# CONDITIONING
|
||||
self.effnet_mapper = nn.Sequential(
|
||||
operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
)
|
||||
self.pixels_mapper = nn.Sequential(
|
||||
operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
||||
nn.GELU(),
|
||||
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
)
|
||||
self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
|
||||
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.embedding = nn.Sequential(
|
||||
nn.PixelUnshuffle(patch_size),
|
||||
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
||||
if block_type == 'C':
|
||||
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'A':
|
||||
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'F':
|
||||
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'T':
|
||||
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
raise Exception(f'Block type {block_type} not supported')
|
||||
|
||||
# BLOCKS
|
||||
# -- down blocks
|
||||
self.down_blocks = nn.ModuleList()
|
||||
self.down_downscalers = nn.ModuleList()
|
||||
self.down_repeat_mappers = nn.ModuleList()
|
||||
for i in range(len(c_hidden)):
|
||||
if i > 0:
|
||||
self.down_downscalers.append(nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
||||
operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
|
||||
))
|
||||
else:
|
||||
self.down_downscalers.append(nn.Identity())
|
||||
down_block = nn.ModuleList()
|
||||
for _ in range(blocks[0][i]):
|
||||
for block_type in level_config[i]:
|
||||
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
||||
down_block.append(block)
|
||||
self.down_blocks.append(down_block)
|
||||
if block_repeat is not None:
|
||||
block_repeat_mappers = nn.ModuleList()
|
||||
for _ in range(block_repeat[0][i] - 1):
|
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
||||
self.down_repeat_mappers.append(block_repeat_mappers)
|
||||
|
||||
# -- up blocks
|
||||
self.up_blocks = nn.ModuleList()
|
||||
self.up_upscalers = nn.ModuleList()
|
||||
self.up_repeat_mappers = nn.ModuleList()
|
||||
for i in reversed(range(len(c_hidden))):
|
||||
if i > 0:
|
||||
self.up_upscalers.append(nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
||||
operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
|
||||
))
|
||||
else:
|
||||
self.up_upscalers.append(nn.Identity())
|
||||
up_block = nn.ModuleList()
|
||||
for j in range(blocks[1][::-1][i]):
|
||||
for k, block_type in enumerate(level_config[i]):
|
||||
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
||||
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
||||
self_attn=self_attn[i])
|
||||
up_block.append(block)
|
||||
self.up_blocks.append(up_block)
|
||||
if block_repeat is not None:
|
||||
block_repeat_mappers = nn.ModuleList()
|
||||
for _ in range(block_repeat[1][::-1][i] - 1):
|
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
||||
self.up_repeat_mappers.append(block_repeat_mappers)
|
||||
|
||||
# OUTPUT
|
||||
self.clf = nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
||||
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
||||
nn.PixelShuffle(patch_size),
|
||||
)
|
||||
|
||||
# --- WEIGHT INIT ---
|
||||
# self.apply(self._init_weights) # General init
|
||||
# nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
|
||||
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
||||
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
||||
#
|
||||
# # blocks
|
||||
# for level_block in self.down_blocks + self.up_blocks:
|
||||
# for block in level_block:
|
||||
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
||||
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
||||
# elif isinstance(block, TimestepBlock):
|
||||
# for layer in block.modules():
|
||||
# if isinstance(layer, nn.Linear):
|
||||
# nn.init.constant_(layer.weight, 0)
|
||||
#
|
||||
# def _init_weights(self, m):
|
||||
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
||||
# torch.nn.init.xavier_uniform_(m.weight)
|
||||
# if m.bias is not None:
|
||||
# nn.init.constant_(m.bias, 0)
|
||||
|
||||
def gen_r_embedding(self, r, max_positions=10000):
|
||||
r = r * max_positions
|
||||
half_dim = self.c_r // 2
|
||||
emb = math.log(max_positions) / (half_dim - 1)
|
||||
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
||||
emb = r[:, None] * emb[None, :]
|
||||
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
||||
if self.c_r % 2 == 1: # zero pad
|
||||
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
||||
return emb
|
||||
|
||||
def gen_c_embeddings(self, clip):
|
||||
if len(clip.shape) == 2:
|
||||
clip = clip.unsqueeze(1)
|
||||
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
|
||||
clip = self.clip_norm(clip)
|
||||
return clip
|
||||
|
||||
def _down_encode(self, x, r_embed, clip):
|
||||
level_outputs = []
|
||||
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
||||
for down_block, downscaler, repmap in block_group:
|
||||
x = downscaler(x)
|
||||
for i in range(len(repmap) + 1):
|
||||
for block in down_block:
|
||||
if isinstance(block, ResBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
ResBlock)):
|
||||
x = block(x)
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
x = block(x, r_embed)
|
||||
else:
|
||||
x = block(x)
|
||||
if i < len(repmap):
|
||||
x = repmap[i](x)
|
||||
level_outputs.insert(0, x)
|
||||
return level_outputs
|
||||
|
||||
def _up_decode(self, level_outputs, r_embed, clip):
|
||||
x = level_outputs[0]
|
||||
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
||||
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
||||
for j in range(len(repmap) + 1):
|
||||
for k, block in enumerate(up_block):
|
||||
if isinstance(block, ResBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
ResBlock)):
|
||||
skip = level_outputs[i] if k == 0 and i > 0 else None
|
||||
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
||||
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
||||
align_corners=True)
|
||||
x = block(x, skip)
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
x = block(x, r_embed)
|
||||
else:
|
||||
x = block(x)
|
||||
if j < len(repmap):
|
||||
x = repmap[j](x)
|
||||
x = upscaler(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
||||
if pixels is None:
|
||||
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
||||
|
||||
# Process the conditioning embeddings
|
||||
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
||||
for c in self.t_conds:
|
||||
t_cond = kwargs.get(c, torch.zeros_like(r))
|
||||
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
||||
clip = self.gen_c_embeddings(clip)
|
||||
|
||||
# Model Blocks
|
||||
x = self.embedding(x)
|
||||
x = x + self.effnet_mapper(
|
||||
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
|
||||
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
|
||||
align_corners=True)
|
||||
level_outputs = self._down_encode(x, r_embed, clip)
|
||||
x = self._up_decode(level_outputs, r_embed, clip)
|
||||
return self.clf(x)
|
||||
|
||||
def update_weights_ema(self, src_model, beta=0.999):
|
||||
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
||||
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
||||
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
||||
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
||||
273
comfy/ldm/cascade/stage_c.py
Normal file
273
comfy/ldm/cascade/stage_c.py
Normal file
@@ -0,0 +1,273 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
||||
# from .controlnet import ControlNetDeliverer
|
||||
|
||||
class UpDownBlock2d(nn.Module):
|
||||
def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
assert mode in ['up', 'down']
|
||||
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
|
||||
align_corners=True) if enabled else nn.Identity()
|
||||
mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
|
||||
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
|
||||
|
||||
def forward(self, x):
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
return x
|
||||
|
||||
|
||||
class StageC(nn.Module):
|
||||
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
|
||||
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
|
||||
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
|
||||
dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
|
||||
dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.c_r = c_r
|
||||
self.t_conds = t_conds
|
||||
self.c_clip_seq = c_clip_seq
|
||||
if not isinstance(dropout, list):
|
||||
dropout = [dropout] * len(c_hidden)
|
||||
if not isinstance(self_attn, list):
|
||||
self_attn = [self_attn] * len(c_hidden)
|
||||
|
||||
# CONDITIONING
|
||||
self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
|
||||
self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
|
||||
self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
|
||||
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.embedding = nn.Sequential(
|
||||
nn.PixelUnshuffle(patch_size),
|
||||
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
|
||||
)
|
||||
|
||||
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
||||
if block_type == 'C':
|
||||
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'A':
|
||||
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'F':
|
||||
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
||||
elif block_type == 'T':
|
||||
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
raise Exception(f'Block type {block_type} not supported')
|
||||
|
||||
# BLOCKS
|
||||
# -- down blocks
|
||||
self.down_blocks = nn.ModuleList()
|
||||
self.down_downscalers = nn.ModuleList()
|
||||
self.down_repeat_mappers = nn.ModuleList()
|
||||
for i in range(len(c_hidden)):
|
||||
if i > 0:
|
||||
self.down_downscalers.append(nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
||||
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
||||
))
|
||||
else:
|
||||
self.down_downscalers.append(nn.Identity())
|
||||
down_block = nn.ModuleList()
|
||||
for _ in range(blocks[0][i]):
|
||||
for block_type in level_config[i]:
|
||||
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
||||
down_block.append(block)
|
||||
self.down_blocks.append(down_block)
|
||||
if block_repeat is not None:
|
||||
block_repeat_mappers = nn.ModuleList()
|
||||
for _ in range(block_repeat[0][i] - 1):
|
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
||||
self.down_repeat_mappers.append(block_repeat_mappers)
|
||||
|
||||
# -- up blocks
|
||||
self.up_blocks = nn.ModuleList()
|
||||
self.up_upscalers = nn.ModuleList()
|
||||
self.up_repeat_mappers = nn.ModuleList()
|
||||
for i in reversed(range(len(c_hidden))):
|
||||
if i > 0:
|
||||
self.up_upscalers.append(nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
||||
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
||||
))
|
||||
else:
|
||||
self.up_upscalers.append(nn.Identity())
|
||||
up_block = nn.ModuleList()
|
||||
for j in range(blocks[1][::-1][i]):
|
||||
for k, block_type in enumerate(level_config[i]):
|
||||
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
||||
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
||||
self_attn=self_attn[i])
|
||||
up_block.append(block)
|
||||
self.up_blocks.append(up_block)
|
||||
if block_repeat is not None:
|
||||
block_repeat_mappers = nn.ModuleList()
|
||||
for _ in range(block_repeat[1][::-1][i] - 1):
|
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
||||
self.up_repeat_mappers.append(block_repeat_mappers)
|
||||
|
||||
# OUTPUT
|
||||
self.clf = nn.Sequential(
|
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
||||
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
||||
nn.PixelShuffle(patch_size),
|
||||
)
|
||||
|
||||
# --- WEIGHT INIT ---
|
||||
# self.apply(self._init_weights) # General init
|
||||
# nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
|
||||
# nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
|
||||
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
||||
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
||||
#
|
||||
# # blocks
|
||||
# for level_block in self.down_blocks + self.up_blocks:
|
||||
# for block in level_block:
|
||||
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
||||
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
||||
# elif isinstance(block, TimestepBlock):
|
||||
# for layer in block.modules():
|
||||
# if isinstance(layer, nn.Linear):
|
||||
# nn.init.constant_(layer.weight, 0)
|
||||
#
|
||||
# def _init_weights(self, m):
|
||||
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
||||
# torch.nn.init.xavier_uniform_(m.weight)
|
||||
# if m.bias is not None:
|
||||
# nn.init.constant_(m.bias, 0)
|
||||
|
||||
def gen_r_embedding(self, r, max_positions=10000):
|
||||
r = r * max_positions
|
||||
half_dim = self.c_r // 2
|
||||
emb = math.log(max_positions) / (half_dim - 1)
|
||||
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
||||
emb = r[:, None] * emb[None, :]
|
||||
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
||||
if self.c_r % 2 == 1: # zero pad
|
||||
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
||||
return emb
|
||||
|
||||
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
|
||||
clip_txt = self.clip_txt_mapper(clip_txt)
|
||||
if len(clip_txt_pooled.shape) == 2:
|
||||
clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
|
||||
if len(clip_img.shape) == 2:
|
||||
clip_img = clip_img.unsqueeze(1)
|
||||
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
|
||||
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
|
||||
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
|
||||
clip = self.clip_norm(clip)
|
||||
return clip
|
||||
|
||||
def _down_encode(self, x, r_embed, clip, cnet=None):
|
||||
level_outputs = []
|
||||
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
||||
for down_block, downscaler, repmap in block_group:
|
||||
x = downscaler(x)
|
||||
for i in range(len(repmap) + 1):
|
||||
for block in down_block:
|
||||
if isinstance(block, ResBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
ResBlock)):
|
||||
if cnet is not None:
|
||||
next_cnet = cnet.pop()
|
||||
if next_cnet is not None:
|
||||
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
||||
align_corners=True).to(x.dtype)
|
||||
x = block(x)
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
x = block(x, r_embed)
|
||||
else:
|
||||
x = block(x)
|
||||
if i < len(repmap):
|
||||
x = repmap[i](x)
|
||||
level_outputs.insert(0, x)
|
||||
return level_outputs
|
||||
|
||||
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
||||
x = level_outputs[0]
|
||||
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
||||
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
||||
for j in range(len(repmap) + 1):
|
||||
for k, block in enumerate(up_block):
|
||||
if isinstance(block, ResBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
ResBlock)):
|
||||
skip = level_outputs[i] if k == 0 and i > 0 else None
|
||||
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
||||
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
||||
align_corners=True)
|
||||
if cnet is not None:
|
||||
next_cnet = cnet.pop()
|
||||
if next_cnet is not None:
|
||||
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
||||
align_corners=True).to(x.dtype)
|
||||
x = block(x, skip)
|
||||
elif isinstance(block, AttnBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
AttnBlock)):
|
||||
x = block(x, clip)
|
||||
elif isinstance(block, TimestepBlock) or (
|
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
||||
TimestepBlock)):
|
||||
x = block(x, r_embed)
|
||||
else:
|
||||
x = block(x)
|
||||
if j < len(repmap):
|
||||
x = repmap[j](x)
|
||||
x = upscaler(x)
|
||||
return x
|
||||
|
||||
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
|
||||
# Process the conditioning embeddings
|
||||
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
||||
for c in self.t_conds:
|
||||
t_cond = kwargs.get(c, torch.zeros_like(r))
|
||||
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
||||
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
|
||||
|
||||
if control is not None:
|
||||
cnet = control.get("input")
|
||||
else:
|
||||
cnet = None
|
||||
|
||||
# Model Blocks
|
||||
x = self.embedding(x)
|
||||
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
||||
x = self._up_decode(level_outputs, r_embed, clip, cnet)
|
||||
return self.clf(x)
|
||||
|
||||
def update_weights_ema(self, src_model, beta=0.999):
|
||||
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
||||
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
||||
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
||||
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
||||
95
comfy/ldm/cascade/stage_c_coder.py
Normal file
95
comfy/ldm/cascade/stage_c_coder.py
Normal file
@@ -0,0 +1,95 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
|
||||
# EfficientNet
|
||||
class EfficientNetEncoder(nn.Module):
|
||||
def __init__(self, c_latent=16):
|
||||
super().__init__()
|
||||
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
||||
self.mapper = nn.Sequential(
|
||||
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
||||
)
|
||||
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
|
||||
self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 0.5 + 0.5
|
||||
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
|
||||
o = self.mapper(self.backbone(x))
|
||||
return o
|
||||
|
||||
|
||||
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
||||
class Previewer(nn.Module):
|
||||
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
||||
super().__init__()
|
||||
self.blocks = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return (self.blocks(x) - 0.5) * 2.0
|
||||
|
||||
class StageC_coder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.previewer = Previewer()
|
||||
self.encoder = EfficientNetEncoder()
|
||||
|
||||
def encode(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
def decode(self, x):
|
||||
return self.previewer(x)
|
||||
27
comfy/ldm/common_dit.py
Normal file
27
comfy/ldm/common_dit.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import torch
|
||||
import comfy.ops
|
||||
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
padding_mode = "reflect"
|
||||
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
|
||||
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
|
||||
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode)
|
||||
|
||||
try:
|
||||
rms_norm_torch = torch.nn.functional.rms_norm
|
||||
except:
|
||||
rms_norm_torch = None
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-6):
|
||||
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
|
||||
if weight is None:
|
||||
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
|
||||
else:
|
||||
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
|
||||
else:
|
||||
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
|
||||
if weight is None:
|
||||
return r
|
||||
else:
|
||||
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
|
||||
205
comfy/ldm/flux/controlnet.py
Normal file
205
comfy/ldm/flux/controlnet.py
Normal file
@@ -0,0 +1,205 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
#modified to support different types of flux controlnets
|
||||
|
||||
import torch
|
||||
import math
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class MistolineCondDownsamplBlock(nn.Module):
|
||||
def __init__(self, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.encoder = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
class MistolineControlnetBlock(nn.Module):
|
||||
def __init__(self, hidden_size, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.linear = operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.linear(x))
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, latent_input=False, num_union_modes=0, mistoline=False, control_latent_channels=None, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
self.main_model_double = 19
|
||||
self.main_model_single = 38
|
||||
|
||||
self.mistoline = mistoline
|
||||
# add ControlNet blocks
|
||||
if self.mistoline:
|
||||
control_block = lambda : MistolineControlnetBlock(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
control_block = lambda : operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
self.controlnet_blocks.append(control_block())
|
||||
|
||||
self.controlnet_single_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth_single_blocks):
|
||||
self.controlnet_single_blocks.append(control_block())
|
||||
|
||||
self.num_union_modes = num_union_modes
|
||||
self.controlnet_mode_embedder = None
|
||||
if self.num_union_modes > 0:
|
||||
self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.latent_input = latent_input
|
||||
if control_latent_channels is None:
|
||||
control_latent_channels = self.in_channels
|
||||
else:
|
||||
control_latent_channels *= 2 * 2 #patch size
|
||||
|
||||
self.pos_embed_input = operations.Linear(control_latent_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
if not self.latent_input:
|
||||
if self.mistoline:
|
||||
self.input_cond_block = MistolineCondDownsamplBlock(dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control_type: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
if self.controlnet_mode_embedder is not None and len(control_type) > 0:
|
||||
control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
|
||||
txt = torch.cat([control_cond, txt], dim=1)
|
||||
txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
controlnet_double = ()
|
||||
|
||||
for i in range(len(self.double_blocks)):
|
||||
img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
|
||||
controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
controlnet_single = ()
|
||||
|
||||
for i in range(len(self.single_blocks)):
|
||||
img = self.single_blocks[i](img, vec=vec, pe=pe)
|
||||
controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)
|
||||
|
||||
repeat = math.ceil(self.main_model_double / len(controlnet_double))
|
||||
if self.latent_input:
|
||||
out_input = ()
|
||||
for x in controlnet_double:
|
||||
out_input += (x,) * repeat
|
||||
else:
|
||||
out_input = (controlnet_double * repeat)
|
||||
|
||||
out = {"input": out_input[:self.main_model_double]}
|
||||
if len(controlnet_single) > 0:
|
||||
repeat = math.ceil(self.main_model_single / len(controlnet_single))
|
||||
out_output = ()
|
||||
if self.latent_input:
|
||||
for x in controlnet_single:
|
||||
out_output += (x,) * repeat
|
||||
else:
|
||||
out_output = (controlnet_single * repeat)
|
||||
out["output"] = out_output[:self.main_model_single]
|
||||
return out
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
patch_size = 2
|
||||
if self.latent_input:
|
||||
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
|
||||
elif self.mistoline:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_cond_block(hint)
|
||||
else:
|
||||
hint = hint * 2.0 - 1.0
|
||||
hint = self.input_hint_block(hint)
|
||||
|
||||
hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))
|
||||
249
comfy/ldm/flux/layers.py
Normal file
249
comfy/ldm/flux/layers.py
Normal file
@@ -0,0 +1,249 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: Tensor) -> Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
|
||||
return emb.unsqueeze(1)
|
||||
|
||||
|
||||
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
t = time_factor * t
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
||||
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(t)
|
||||
return embedding
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
k = self.key_norm(k)
|
||||
return q.to(v), k.to(v)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModulationOut:
|
||||
shift: Tensor
|
||||
scale: Tensor
|
||||
gate: Tensor
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
ModulationOut(*out[3:]) if self.is_double else None,
|
||||
)
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2), pe=pe)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
35
comfy/ldm/flux/math.py
Normal file
35
comfy/ldm/flux/math.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.model_management
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
||||
q, k = apply_rope(q, k, pe)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True)
|
||||
return x
|
||||
|
||||
|
||||
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
assert dim % 2 == 0
|
||||
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu():
|
||||
device = torch.device("cpu")
|
||||
else:
|
||||
device = pos.device
|
||||
|
||||
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
||||
omega = 1.0 / (theta**scale)
|
||||
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
||||
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
||||
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||
return out.to(dtype=torch.float32, device=pos.device)
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
160
comfy/ldm/flux/model.py
Normal file
160
comfy/ldm/flux/model.py
Normal file
@@ -0,0 +1,160 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
EmbedND,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
@dataclass
|
||||
class FluxParams:
|
||||
in_channels: int
|
||||
vec_in_dim: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = FluxParams(**kwargs)
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels * 2 * 2
|
||||
self.out_channels = self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control=None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
img = block(img, vec=vec, pe=pe)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, control=None, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control)
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
541
comfy/ldm/genmo/joint_model/asymm_models_joint.py
Normal file
541
comfy/ldm/genmo/joint_model/asymm_models_joint.py
Normal file
@@ -0,0 +1,541 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
# from flash_attn import flash_attn_varlen_qkvpacked_func
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
from .layers import (
|
||||
FeedForward,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
TimestepEmbedder,
|
||||
)
|
||||
|
||||
from .rope_mixed import (
|
||||
compute_mixed_rotation,
|
||||
create_position_matrix,
|
||||
)
|
||||
from .temporal_rope import apply_rotary_emb_qk_real
|
||||
from .utils import (
|
||||
AttentionPool,
|
||||
modulate,
|
||||
)
|
||||
|
||||
import comfy.ldm.common_dit
|
||||
import comfy.ops
|
||||
|
||||
|
||||
def modulated_rmsnorm(x, scale, eps=1e-6):
|
||||
# Normalize and modulate
|
||||
x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps)
|
||||
x_modulated = x_normed * (1 + scale.unsqueeze(1))
|
||||
|
||||
return x_modulated
|
||||
|
||||
|
||||
def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
|
||||
# Apply tanh to gate
|
||||
tanh_gate = torch.tanh(gate).unsqueeze(1)
|
||||
|
||||
# Normalize and apply gated scaling
|
||||
x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate
|
||||
|
||||
# Apply residual connection
|
||||
output = x + x_normed
|
||||
|
||||
return output
|
||||
|
||||
class AsymmetricAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim_x: int,
|
||||
dim_y: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = True,
|
||||
qk_norm: bool = False,
|
||||
attn_drop: float = 0.0,
|
||||
update_y: bool = True,
|
||||
out_bias: bool = True,
|
||||
attend_to_padding: bool = False,
|
||||
softmax_scale: Optional[float] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim_x = dim_x
|
||||
self.dim_y = dim_y
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim_x // num_heads
|
||||
self.attn_drop = attn_drop
|
||||
self.update_y = update_y
|
||||
self.attend_to_padding = attend_to_padding
|
||||
self.softmax_scale = softmax_scale
|
||||
if dim_x % num_heads != 0:
|
||||
raise ValueError(
|
||||
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
|
||||
)
|
||||
|
||||
# Input layers.
|
||||
self.qkv_bias = qkv_bias
|
||||
self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||||
# Project text features to match visual features (dim_y -> dim_x)
|
||||
self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||||
|
||||
# Query and key normalization for stability.
|
||||
assert qk_norm
|
||||
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||||
|
||||
# Output layers. y features go back down from dim_x -> dim_y.
|
||||
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
|
||||
self.proj_y = (
|
||||
operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype)
|
||||
if update_y
|
||||
else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor, # (B, N, dim_x)
|
||||
y: torch.Tensor, # (B, L, dim_y)
|
||||
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
|
||||
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
|
||||
crop_y,
|
||||
**rope_rotation,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
rope_cos = rope_rotation.get("rope_cos")
|
||||
rope_sin = rope_rotation.get("rope_sin")
|
||||
# Pre-norm for visual features
|
||||
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
|
||||
|
||||
# Process visual features
|
||||
# qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
|
||||
# assert qkv_x.dtype == torch.bfloat16
|
||||
# qkv_x = all_to_all_collect_tokens(
|
||||
# qkv_x, self.num_heads
|
||||
# ) # (3, B, N, local_h, head_dim)
|
||||
|
||||
# Process text features
|
||||
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
|
||||
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||||
|
||||
q_y = self.q_norm_y(q_y)
|
||||
k_y = self.k_norm_y(k_y)
|
||||
|
||||
# Split qkv_x into q, k, v
|
||||
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||||
q_x = self.q_norm_x(q_x)
|
||||
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
|
||||
k_x = self.k_norm_x(k_x)
|
||||
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
|
||||
|
||||
q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||||
|
||||
xy = optimized_attention(q,
|
||||
k,
|
||||
v, self.num_heads, skip_reshape=True)
|
||||
|
||||
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
|
||||
x = self.proj_x(x)
|
||||
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
|
||||
o[:, :y.shape[1]] = y
|
||||
|
||||
y = self.proj_y(o)
|
||||
# print("ox", x)
|
||||
# print("oy", y)
|
||||
return x, y
|
||||
|
||||
|
||||
class AsymmetricJointBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size_x: int,
|
||||
hidden_size_y: int,
|
||||
num_heads: int,
|
||||
*,
|
||||
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
|
||||
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
|
||||
update_y: bool = True, # Whether to update text tokens in this block.
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.update_y = update_y
|
||||
self.hidden_size_x = hidden_size_x
|
||||
self.hidden_size_y = hidden_size_y
|
||||
self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype)
|
||||
if self.update_y:
|
||||
self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype)
|
||||
else:
|
||||
self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype)
|
||||
|
||||
# Self-attention:
|
||||
self.attn = AsymmetricAttention(
|
||||
hidden_size_x,
|
||||
hidden_size_y,
|
||||
num_heads=num_heads,
|
||||
update_y=update_y,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
# MLP.
|
||||
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
|
||||
assert mlp_hidden_dim_x == int(1536 * 8)
|
||||
self.mlp_x = FeedForward(
|
||||
in_features=hidden_size_x,
|
||||
hidden_size=mlp_hidden_dim_x,
|
||||
multiple_of=256,
|
||||
ffn_dim_multiplier=None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
# MLP for text not needed in last block.
|
||||
if self.update_y:
|
||||
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
|
||||
self.mlp_y = FeedForward(
|
||||
in_features=hidden_size_y,
|
||||
hidden_size=mlp_hidden_dim_y,
|
||||
multiple_of=256,
|
||||
ffn_dim_multiplier=None,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
c: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
**attn_kwargs,
|
||||
):
|
||||
"""Forward pass of a block.
|
||||
|
||||
Args:
|
||||
x: (B, N, dim) tensor of visual tokens
|
||||
c: (B, dim) tensor of conditioned features
|
||||
y: (B, L, dim) tensor of text tokens
|
||||
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
|
||||
|
||||
Returns:
|
||||
x: (B, N, dim) tensor of visual tokens after block
|
||||
y: (B, L, dim) tensor of text tokens after block
|
||||
"""
|
||||
N = x.size(1)
|
||||
|
||||
c = F.silu(c)
|
||||
mod_x = self.mod_x(c)
|
||||
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
|
||||
|
||||
mod_y = self.mod_y(c)
|
||||
if self.update_y:
|
||||
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
|
||||
else:
|
||||
scale_msa_y = mod_y
|
||||
|
||||
# Self-attention block.
|
||||
x_attn, y_attn = self.attn(
|
||||
x,
|
||||
y,
|
||||
scale_x=scale_msa_x,
|
||||
scale_y=scale_msa_y,
|
||||
**attn_kwargs,
|
||||
)
|
||||
|
||||
assert x_attn.size(1) == N
|
||||
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
|
||||
if self.update_y:
|
||||
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
|
||||
|
||||
# MLP block.
|
||||
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
|
||||
if self.update_y:
|
||||
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
|
||||
|
||||
return x, y
|
||||
|
||||
def ff_block_x(self, x, scale_x, gate_x):
|
||||
x_mod = modulated_rmsnorm(x, scale_x)
|
||||
x_res = self.mlp_x(x_mod)
|
||||
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
|
||||
return x
|
||||
|
||||
def ff_block_y(self, y, scale_y, gate_y):
|
||||
y_mod = modulated_rmsnorm(y, scale_y)
|
||||
y_res = self.mlp_y(y_mod)
|
||||
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
|
||||
return y
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of DiT.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size,
|
||||
patch_size,
|
||||
out_channels,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(
|
||||
hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype
|
||||
)
|
||||
self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype)
|
||||
self.linear = operations.Linear(
|
||||
hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
c = F.silu(c)
|
||||
shift, scale = self.mod(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class AsymmDiTJoint(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
|
||||
Ingests text embeddings instead of a label.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size_x=1152,
|
||||
hidden_size_y=1152,
|
||||
depth=48,
|
||||
num_heads=16,
|
||||
mlp_ratio_x=8.0,
|
||||
mlp_ratio_y=4.0,
|
||||
use_t5: bool = False,
|
||||
t5_feat_dim: int = 4096,
|
||||
t5_token_length: int = 256,
|
||||
learn_sigma=True,
|
||||
patch_embed_bias: bool = True,
|
||||
timestep_mlp_bias: bool = True,
|
||||
attend_to_padding: bool = False,
|
||||
timestep_scale: Optional[float] = None,
|
||||
use_extended_posenc: bool = False,
|
||||
posenc_preserve_area: bool = False,
|
||||
rope_theta: float = 10000.0,
|
||||
image_model=None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dtype = dtype
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size_x = hidden_size_x
|
||||
self.hidden_size_y = hidden_size_y
|
||||
self.head_dim = (
|
||||
hidden_size_x // num_heads
|
||||
) # Head dimension and count is determined by visual.
|
||||
self.attend_to_padding = attend_to_padding
|
||||
self.use_extended_posenc = use_extended_posenc
|
||||
self.posenc_preserve_area = posenc_preserve_area
|
||||
self.use_t5 = use_t5
|
||||
self.t5_token_length = t5_token_length
|
||||
self.t5_feat_dim = t5_feat_dim
|
||||
self.rope_theta = (
|
||||
rope_theta # Scaling factor for frequency computation for temporal RoPE.
|
||||
)
|
||||
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size_x,
|
||||
bias=patch_embed_bias,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
# Conditionings
|
||||
# Timestep
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
if self.use_t5:
|
||||
# Caption Pooling (T5)
|
||||
self.t5_y_embedder = AttentionPool(
|
||||
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
# Dense Embedding Projection (T5)
|
||||
self.t5_yproj = operations.Linear(
|
||||
t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device
|
||||
)
|
||||
|
||||
# Initialize pos_frequencies as an empty parameter.
|
||||
self.pos_frequencies = nn.Parameter(
|
||||
torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
assert not self.attend_to_padding
|
||||
|
||||
# for depth 48:
|
||||
# b = 0: AsymmetricJointBlock, update_y=True
|
||||
# b = 1: AsymmetricJointBlock, update_y=True
|
||||
# ...
|
||||
# b = 46: AsymmetricJointBlock, update_y=True
|
||||
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
|
||||
blocks = []
|
||||
for b in range(depth):
|
||||
# Joint multi-modal block
|
||||
update_y = b < depth - 1
|
||||
block = AsymmetricJointBlock(
|
||||
hidden_size_x,
|
||||
hidden_size_y,
|
||||
num_heads,
|
||||
mlp_ratio_x=mlp_ratio_x,
|
||||
mlp_ratio_y=mlp_ratio_y,
|
||||
update_y=update_y,
|
||||
attend_to_padding=attend_to_padding,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
operations=operations,
|
||||
**block_kwargs,
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
|
||||
self.final_layer = FinalLayer(
|
||||
hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x: (B, C=12, T, H, W) tensor of visual tokens
|
||||
|
||||
Returns:
|
||||
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
|
||||
"""
|
||||
return self.x_embedder(x) # Convert BcTHW to BCN
|
||||
|
||||
def prepare(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sigma: torch.Tensor,
|
||||
t5_feat: torch.Tensor,
|
||||
t5_mask: torch.Tensor,
|
||||
):
|
||||
"""Prepare input and conditioning embeddings."""
|
||||
# Visual patch embeddings with positional encoding.
|
||||
T, H, W = x.shape[-3:]
|
||||
pH, pW = H // self.patch_size, W // self.patch_size
|
||||
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
|
||||
assert x.ndim == 3
|
||||
B = x.size(0)
|
||||
|
||||
|
||||
pH, pW = H // self.patch_size, W // self.patch_size
|
||||
N = T * pH * pW
|
||||
assert x.size(1) == N
|
||||
pos = create_position_matrix(
|
||||
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
|
||||
) # (N, 3)
|
||||
rope_cos, rope_sin = compute_mixed_rotation(
|
||||
freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos
|
||||
) # Each are (N, num_heads, dim // 2)
|
||||
|
||||
c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) # (B, D)
|
||||
|
||||
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
|
||||
|
||||
c = c_t + t5_y_pool
|
||||
|
||||
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
|
||||
|
||||
return x, c, y_feat, rope_cos, rope_sin
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timestep: torch.Tensor,
|
||||
context: List[torch.Tensor],
|
||||
attention_mask: List[torch.Tensor],
|
||||
num_tokens=256,
|
||||
packed_indices: Dict[str, torch.Tensor] = None,
|
||||
rope_cos: torch.Tensor = None,
|
||||
rope_sin: torch.Tensor = None,
|
||||
control=None, **kwargs
|
||||
):
|
||||
y_feat = context
|
||||
y_mask = attention_mask
|
||||
sigma = timestep
|
||||
"""Forward pass of DiT.
|
||||
|
||||
Args:
|
||||
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
sigma: (B,) tensor of noise standard deviations
|
||||
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
|
||||
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
|
||||
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
|
||||
"""
|
||||
B, _, T, H, W = x.shape
|
||||
|
||||
x, c, y_feat, rope_cos, rope_sin = self.prepare(
|
||||
x, sigma, y_feat, y_mask
|
||||
)
|
||||
del y_mask
|
||||
|
||||
for i, block in enumerate(self.blocks):
|
||||
x, y_feat = block(
|
||||
x,
|
||||
c,
|
||||
y_feat,
|
||||
rope_cos=rope_cos,
|
||||
rope_sin=rope_sin,
|
||||
crop_y=num_tokens,
|
||||
) # (B, M, D), (B, L, D)
|
||||
del y_feat # Final layers don't use dense text features.
|
||||
|
||||
x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels)
|
||||
x = rearrange(
|
||||
x,
|
||||
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
|
||||
T=T,
|
||||
hp=H // self.patch_size,
|
||||
wp=W // self.patch_size,
|
||||
p1=self.patch_size,
|
||||
p2=self.patch_size,
|
||||
c=self.out_channels,
|
||||
)
|
||||
|
||||
return -x
|
||||
164
comfy/ldm/genmo/joint_model/layers.py
Normal file
164
comfy/ldm/genmo/joint_model/layers.py
Normal file
@@ -0,0 +1,164 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
import collections.abc
|
||||
import math
|
||||
from itertools import repeat
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
||||
return tuple(x)
|
||||
return tuple(repeat(x, n))
|
||||
|
||||
return parse
|
||||
|
||||
|
||||
to_2tuple = _ntuple(2)
|
||||
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
frequency_embedding_size: int = 256,
|
||||
*,
|
||||
bias: bool = True,
|
||||
timestep_scale: Optional[float] = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
operations.Linear(frequency_embedding_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, hidden_size, bias=bias, dtype=dtype, device=device),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
self.timestep_scale = timestep_scale
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
half = dim // 2
|
||||
freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
||||
freqs.mul_(-math.log(max_period) / half).exp_()
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
return embedding
|
||||
|
||||
def forward(self, t, out_dtype):
|
||||
if self.timestep_scale is not None:
|
||||
t = t * self.timestep_scale
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=out_dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_size: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: Optional[float],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
# keep parameter count and computation constant compared to standard FFN
|
||||
hidden_size = int(2 * hidden_size / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_size = int(ffn_dim_multiplier * hidden_size)
|
||||
hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.hidden_dim = hidden_size
|
||||
self.w1 = operations.Linear(in_features, 2 * hidden_size, bias=False, device=device, dtype=dtype)
|
||||
self.w2 = operations.Linear(hidden_size, in_features, bias=False, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.w1(x).chunk(2, dim=-1)
|
||||
x = self.w2(F.silu(x) * gate)
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
norm_layer: Optional[Callable] = None,
|
||||
flatten: bool = True,
|
||||
bias: bool = True,
|
||||
dynamic_img_pad: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = to_2tuple(patch_size)
|
||||
self.flatten = flatten
|
||||
self.dynamic_img_pad = dynamic_img_pad
|
||||
|
||||
self.proj = operations.Conv2d(
|
||||
in_chans,
|
||||
embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
assert norm_layer is None
|
||||
self.norm = (
|
||||
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
B, _C, T, H, W = x.shape
|
||||
if not self.dynamic_img_pad:
|
||||
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
|
||||
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
|
||||
else:
|
||||
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
||||
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
||||
x = F.pad(x, (0, pad_w, 0, pad_h))
|
||||
|
||||
x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T)
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode='circular')
|
||||
x = self.proj(x)
|
||||
|
||||
# Flatten temporal and spatial dimensions.
|
||||
if not self.flatten:
|
||||
raise NotImplementedError("Must flatten output.")
|
||||
x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T)
|
||||
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
def forward(self, x):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||
88
comfy/ldm/genmo/joint_model/rope_mixed.py
Normal file
88
comfy/ldm/genmo/joint_model/rope_mixed.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
|
||||
# import functools
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def centers(start: float, stop, num, dtype=None, device=None):
|
||||
"""linspace through bin centers.
|
||||
|
||||
Args:
|
||||
start (float): Start of the range.
|
||||
stop (float): End of the range.
|
||||
num (int): Number of points.
|
||||
dtype (torch.dtype): Data type of the points.
|
||||
device (torch.device): Device of the points.
|
||||
|
||||
Returns:
|
||||
centers (Tensor): Centers of the bins. Shape: (num,).
|
||||
"""
|
||||
edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device)
|
||||
return (edges[:-1] + edges[1:]) / 2
|
||||
|
||||
|
||||
# @functools.lru_cache(maxsize=1)
|
||||
def create_position_matrix(
|
||||
T: int,
|
||||
pH: int,
|
||||
pW: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
*,
|
||||
target_area: float = 36864,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
T: int - Temporal dimension
|
||||
pH: int - Height dimension after patchify
|
||||
pW: int - Width dimension after patchify
|
||||
|
||||
Returns:
|
||||
pos: [T * pH * pW, 3] - position matrix
|
||||
"""
|
||||
# Create 1D tensors for each dimension
|
||||
t = torch.arange(T, dtype=dtype)
|
||||
|
||||
# Positionally interpolate to area 36864.
|
||||
# (3072x3072 frame with 16x16 patches = 192x192 latents).
|
||||
# This automatically scales rope positions when the resolution changes.
|
||||
# We use a large target area so the model is more sensitive
|
||||
# to changes in the learned pos_frequencies matrix.
|
||||
scale = math.sqrt(target_area / (pW * pH))
|
||||
w = centers(-pW * scale / 2, pW * scale / 2, pW)
|
||||
h = centers(-pH * scale / 2, pH * scale / 2, pH)
|
||||
|
||||
# Use meshgrid to create 3D grids
|
||||
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
|
||||
|
||||
# Stack and reshape the grids.
|
||||
pos = torch.stack([grid_t, grid_h, grid_w], dim=-1) # [T, pH, pW, 3]
|
||||
pos = pos.view(-1, 3) # [T * pH * pW, 3]
|
||||
pos = pos.to(dtype=dtype, device=device)
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
def compute_mixed_rotation(
|
||||
freqs: torch.Tensor,
|
||||
pos: torch.Tensor,
|
||||
):
|
||||
"""
|
||||
Project each 3-dim position into per-head, per-head-dim 1D frequencies.
|
||||
|
||||
Args:
|
||||
freqs: [3, num_heads, num_freqs] - learned rotation frequency (for t, row, col) for each head position
|
||||
pos: [N, 3] - position of each token
|
||||
num_heads: int
|
||||
|
||||
Returns:
|
||||
freqs_cos: [N, num_heads, num_freqs] - cosine components
|
||||
freqs_sin: [N, num_heads, num_freqs] - sine components
|
||||
"""
|
||||
assert freqs.ndim == 3
|
||||
freqs_sum = torch.einsum("Nd,dhf->Nhf", pos.to(freqs), freqs)
|
||||
freqs_cos = torch.cos(freqs_sum)
|
||||
freqs_sin = torch.sin(freqs_sum)
|
||||
return freqs_cos, freqs_sin
|
||||
34
comfy/ldm/genmo/joint_model/temporal_rope.py
Normal file
34
comfy/ldm/genmo/joint_model/temporal_rope.py
Normal file
@@ -0,0 +1,34 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
|
||||
# Based on Llama3 Implementation.
|
||||
import torch
|
||||
|
||||
|
||||
def apply_rotary_emb_qk_real(
|
||||
xqk: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor without complex numbers.
|
||||
|
||||
Args:
|
||||
xqk (torch.Tensor): Query and/or Key tensors to apply rotary embeddings. Shape: (B, S, *, num_heads, D)
|
||||
Can be either just query or just key, or both stacked along some batch or * dim.
|
||||
freqs_cos (torch.Tensor): Precomputed cosine frequency tensor.
|
||||
freqs_sin (torch.Tensor): Precomputed sine frequency tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The input tensor with rotary embeddings applied.
|
||||
"""
|
||||
# Split the last dimension into even and odd parts
|
||||
xqk_even = xqk[..., 0::2]
|
||||
xqk_odd = xqk[..., 1::2]
|
||||
|
||||
# Apply rotation
|
||||
cos_part = (xqk_even * freqs_cos - xqk_odd * freqs_sin).type_as(xqk)
|
||||
sin_part = (xqk_even * freqs_sin + xqk_odd * freqs_cos).type_as(xqk)
|
||||
|
||||
# Interleave the results back into the original shape
|
||||
out = torch.stack([cos_part, sin_part], dim=-1).flatten(-2)
|
||||
return out
|
||||
102
comfy/ldm/genmo/joint_model/utils.py
Normal file
102
comfy/ldm/genmo/joint_model/utils.py
Normal file
@@ -0,0 +1,102 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
|
||||
"""
|
||||
Pool tokens in x using mask.
|
||||
|
||||
NOTE: We assume x does not require gradients.
|
||||
|
||||
Args:
|
||||
x: (B, L, D) tensor of tokens.
|
||||
mask: (B, L) boolean tensor indicating which tokens are not padding.
|
||||
|
||||
Returns:
|
||||
pooled: (B, D) tensor of pooled tokens.
|
||||
"""
|
||||
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
|
||||
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
|
||||
mask = mask[:, :, None].to(dtype=x.dtype)
|
||||
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
|
||||
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
|
||||
return pooled
|
||||
|
||||
|
||||
class AttentionPool(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
output_dim: int = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
spatial_dim (int): Number of tokens in sequence length.
|
||||
embed_dim (int): Dimensionality of input tokens.
|
||||
num_heads (int): Number of attention heads.
|
||||
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.to_kv = operations.Linear(embed_dim, 2 * embed_dim, device=device, dtype=dtype)
|
||||
self.to_q = operations.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
|
||||
self.to_out = operations.Linear(embed_dim, output_dim or embed_dim, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x, mask):
|
||||
"""
|
||||
Args:
|
||||
x (torch.Tensor): (B, L, D) tensor of input tokens.
|
||||
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
|
||||
|
||||
NOTE: We assume x does not require gradients.
|
||||
|
||||
Returns:
|
||||
x (torch.Tensor): (B, D) tensor of pooled tokens.
|
||||
"""
|
||||
D = x.size(2)
|
||||
|
||||
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
|
||||
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
|
||||
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
|
||||
|
||||
# Average non-padding token features. These will be used as the query.
|
||||
x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D)
|
||||
|
||||
# Concat pooled features to input sequence.
|
||||
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
|
||||
|
||||
# Compute queries, keys, values. Only the mean token is used to create a query.
|
||||
kv = self.to_kv(x) # (B, L+1, 2 * D)
|
||||
q = self.to_q(x[:, 0]) # (B, D)
|
||||
|
||||
# Extract heads.
|
||||
head_dim = D // self.num_heads
|
||||
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
|
||||
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
|
||||
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
|
||||
q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim)
|
||||
q = q.unsqueeze(2) # (B, H, 1, head_dim)
|
||||
|
||||
# Compute attention.
|
||||
x = F.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attn_mask, dropout_p=0.0
|
||||
) # (B, H, 1, head_dim)
|
||||
|
||||
# Concatenate heads and run output.
|
||||
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
|
||||
x = self.to_out(x)
|
||||
return x
|
||||
711
comfy/ldm/genmo/vae/model.py
Normal file
711
comfy/ldm/genmo/vae/model.py
Normal file
@@ -0,0 +1,711 @@
|
||||
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||||
#adapted to ComfyUI
|
||||
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
from functools import partial
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
# import mochi_preview.dit.joint_model.context_parallel as cp
|
||||
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
|
||||
|
||||
|
||||
def cast_tuple(t, length=1):
|
||||
return t if isinstance(t, tuple) else ((t,) * length)
|
||||
|
||||
|
||||
class GroupNormSpatial(ops.GroupNorm):
|
||||
"""
|
||||
GroupNorm applied per-frame.
|
||||
"""
|
||||
|
||||
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
|
||||
B, C, T, H, W = x.shape
|
||||
x = rearrange(x, "B C T H W -> (B T) C H W")
|
||||
# Run group norm in chunks.
|
||||
output = torch.empty_like(x)
|
||||
for b in range(0, B * T, chunk_size):
|
||||
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
|
||||
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
|
||||
|
||||
class PConv3d(ops.Conv3d):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size: Union[int, Tuple[int, int, int]],
|
||||
stride: Union[int, Tuple[int, int, int]],
|
||||
causal: bool = True,
|
||||
context_parallel: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
self.causal = causal
|
||||
self.context_parallel = context_parallel
|
||||
kernel_size = cast_tuple(kernel_size, 3)
|
||||
stride = cast_tuple(stride, 3)
|
||||
height_pad = (kernel_size[1] - 1) // 2
|
||||
width_pad = (kernel_size[2] - 1) // 2
|
||||
|
||||
super().__init__(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=(1, 1, 1),
|
||||
padding=(0, height_pad, width_pad),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# Compute padding amounts.
|
||||
context_size = self.kernel_size[0] - 1
|
||||
if self.causal:
|
||||
pad_front = context_size
|
||||
pad_back = 0
|
||||
else:
|
||||
pad_front = context_size // 2
|
||||
pad_back = context_size - pad_front
|
||||
|
||||
# Apply padding.
|
||||
assert self.padding_mode == "replicate" # DEBUG
|
||||
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
|
||||
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class Conv1x1(ops.Linear):
|
||||
"""*1x1 Conv implemented with a linear layer."""
|
||||
|
||||
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
|
||||
super().__init__(in_features, out_features, *args, **kwargs)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, *] or [B, *, C].
|
||||
|
||||
Returns:
|
||||
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
|
||||
"""
|
||||
x = x.movedim(1, -1)
|
||||
x = super().forward(x)
|
||||
x = x.movedim(-1, 1)
|
||||
return x
|
||||
|
||||
|
||||
class DepthToSpaceTime(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
temporal_expansion: int,
|
||||
spatial_expansion: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.temporal_expansion = temporal_expansion
|
||||
self.spatial_expansion = spatial_expansion
|
||||
|
||||
# When printed, this module should show the temporal and spatial expansion factors.
|
||||
def extra_repr(self):
|
||||
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
|
||||
Returns:
|
||||
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
|
||||
"""
|
||||
x = rearrange(
|
||||
x,
|
||||
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
|
||||
st=self.temporal_expansion,
|
||||
sh=self.spatial_expansion,
|
||||
sw=self.spatial_expansion,
|
||||
)
|
||||
|
||||
# cp_rank, _ = cp.get_cp_rank_size()
|
||||
if self.temporal_expansion > 1: # and cp_rank == 0:
|
||||
# Drop the first self.temporal_expansion - 1 frames.
|
||||
# This is because we always want the 3x3x3 conv filter to only apply
|
||||
# to the first frame, and the first frame doesn't need to be repeated.
|
||||
assert all(x.shape)
|
||||
x = x[:, :, self.temporal_expansion - 1 :]
|
||||
assert all(x.shape)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def norm_fn(
|
||||
in_channels: int,
|
||||
affine: bool = True,
|
||||
):
|
||||
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""Residual block that preserves the spatial dimensions."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
*,
|
||||
affine: bool = True,
|
||||
attn_block: Optional[nn.Module] = None,
|
||||
causal: bool = True,
|
||||
prune_bottleneck: bool = False,
|
||||
padding_mode: str,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
||||
assert causal
|
||||
self.stack = nn.Sequential(
|
||||
norm_fn(channels, affine=affine),
|
||||
nn.SiLU(inplace=True),
|
||||
PConv3d(
|
||||
in_channels=channels,
|
||||
out_channels=channels // 2 if prune_bottleneck else channels,
|
||||
kernel_size=(3, 3, 3),
|
||||
stride=(1, 1, 1),
|
||||
padding_mode=padding_mode,
|
||||
bias=bias,
|
||||
causal=causal,
|
||||
),
|
||||
norm_fn(channels, affine=affine),
|
||||
nn.SiLU(inplace=True),
|
||||
PConv3d(
|
||||
in_channels=channels // 2 if prune_bottleneck else channels,
|
||||
out_channels=channels,
|
||||
kernel_size=(3, 3, 3),
|
||||
stride=(1, 1, 1),
|
||||
padding_mode=padding_mode,
|
||||
bias=bias,
|
||||
causal=causal,
|
||||
),
|
||||
)
|
||||
|
||||
self.attn_block = attn_block if attn_block else nn.Identity()
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
residual = x
|
||||
x = self.stack(x)
|
||||
x = x + residual
|
||||
del residual
|
||||
|
||||
return self.attn_block(x)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
head_dim: int = 32,
|
||||
qkv_bias: bool = False,
|
||||
out_bias: bool = True,
|
||||
qk_norm: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.head_dim = head_dim
|
||||
self.num_heads = dim // head_dim
|
||||
self.qk_norm = qk_norm
|
||||
|
||||
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
|
||||
self.out = nn.Linear(dim, dim, bias=out_bias)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""Compute temporal self-attention.
|
||||
|
||||
Args:
|
||||
x: Input tensor. Shape: [B, C, T, H, W].
|
||||
chunk_size: Chunk size for large tensors.
|
||||
|
||||
Returns:
|
||||
x: Output tensor. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
B, _, T, H, W = x.shape
|
||||
|
||||
if T == 1:
|
||||
# No attention for single frame.
|
||||
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
|
||||
qkv = self.qkv(x)
|
||||
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
|
||||
x = self.out(x)
|
||||
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
|
||||
|
||||
# 1D temporal attention.
|
||||
x = rearrange(x, "B C t h w -> (B h w) t C")
|
||||
qkv = self.qkv(x)
|
||||
|
||||
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
|
||||
# Output: x with shape [B, num_heads, t, head_dim]
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)
|
||||
|
||||
if self.qk_norm:
|
||||
q = F.normalize(q, p=2, dim=-1)
|
||||
k = F.normalize(k, p=2, dim=-1)
|
||||
|
||||
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
|
||||
|
||||
assert x.size(0) == q.size(0)
|
||||
|
||||
x = self.out(x)
|
||||
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
|
||||
return x
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
**attn_kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.norm = norm_fn(dim)
|
||||
self.attn = Attention(dim, **attn_kwargs)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x + self.attn(self.norm(x))
|
||||
|
||||
|
||||
class CausalUpsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks: int,
|
||||
*,
|
||||
temporal_expansion: int = 2,
|
||||
spatial_expansion: int = 2,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = []
|
||||
for _ in range(num_res_blocks):
|
||||
blocks.append(block_fn(in_channels, **block_kwargs))
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
self.temporal_expansion = temporal_expansion
|
||||
self.spatial_expansion = spatial_expansion
|
||||
|
||||
# Change channels in the final convolution layer.
|
||||
self.proj = Conv1x1(
|
||||
in_channels,
|
||||
out_channels * temporal_expansion * (spatial_expansion**2),
|
||||
)
|
||||
|
||||
self.d2st = DepthToSpaceTime(
|
||||
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.blocks(x)
|
||||
x = self.proj(x)
|
||||
x = self.d2st(x)
|
||||
return x
|
||||
|
||||
|
||||
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
|
||||
attn_block = AttentionBlock(channels) if has_attention else None
|
||||
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
|
||||
|
||||
|
||||
class DownsampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks,
|
||||
*,
|
||||
temporal_reduction=2,
|
||||
spatial_reduction=2,
|
||||
**block_kwargs,
|
||||
):
|
||||
"""
|
||||
Downsample block for the VAE encoder.
|
||||
|
||||
Args:
|
||||
in_channels: Number of input channels.
|
||||
out_channels: Number of output channels.
|
||||
num_res_blocks: Number of residual blocks.
|
||||
temporal_reduction: Temporal reduction factor.
|
||||
spatial_reduction: Spatial reduction factor.
|
||||
"""
|
||||
super().__init__()
|
||||
layers = []
|
||||
|
||||
# Change the channel count in the strided convolution.
|
||||
# This lets the ResBlock have uniform channel count,
|
||||
# as in ConvNeXt.
|
||||
assert in_channels != out_channels
|
||||
layers.append(
|
||||
PConv3d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
|
||||
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
|
||||
# First layer in each block always uses replicate padding
|
||||
padding_mode="replicate",
|
||||
bias=block_kwargs["bias"],
|
||||
)
|
||||
)
|
||||
|
||||
for _ in range(num_res_blocks):
|
||||
layers.append(block_fn(out_channels, **block_kwargs))
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
|
||||
num_freqs = (stop - start) // step
|
||||
assert inputs.ndim == 5
|
||||
C = inputs.size(1)
|
||||
|
||||
# Create Base 2 Fourier features.
|
||||
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
|
||||
assert num_freqs == len(freqs)
|
||||
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
||||
C = inputs.shape[1]
|
||||
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
|
||||
|
||||
# Interleaved repeat of input channels to match w.
|
||||
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
||||
# Scale channels by frequency.
|
||||
h = w * h
|
||||
|
||||
return torch.cat(
|
||||
[
|
||||
inputs,
|
||||
torch.sin(h),
|
||||
torch.cos(h),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
|
||||
class FourierFeatures(nn.Module):
|
||||
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
||||
super().__init__()
|
||||
self.start = start
|
||||
self.stop = stop
|
||||
self.step = step
|
||||
|
||||
def forward(self, inputs):
|
||||
"""Add Fourier features to inputs.
|
||||
|
||||
Args:
|
||||
inputs: Input tensor. Shape: [B, C, T, H, W]
|
||||
|
||||
Returns:
|
||||
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
|
||||
"""
|
||||
return add_fourier_features(inputs, self.start, self.stop, self.step)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
out_channels: int = 3,
|
||||
latent_dim: int,
|
||||
base_channels: int,
|
||||
channel_multipliers: List[int],
|
||||
num_res_blocks: List[int],
|
||||
temporal_expansions: Optional[List[int]] = None,
|
||||
spatial_expansions: Optional[List[int]] = None,
|
||||
has_attention: List[bool],
|
||||
output_norm: bool = True,
|
||||
nonlinearity: str = "silu",
|
||||
output_nonlinearity: str = "silu",
|
||||
causal: bool = True,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.input_channels = latent_dim
|
||||
self.base_channels = base_channels
|
||||
self.channel_multipliers = channel_multipliers
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.output_nonlinearity = output_nonlinearity
|
||||
assert nonlinearity == "silu"
|
||||
assert causal
|
||||
|
||||
ch = [mult * base_channels for mult in channel_multipliers]
|
||||
self.num_up_blocks = len(ch) - 1
|
||||
assert len(num_res_blocks) == self.num_up_blocks + 2
|
||||
|
||||
blocks = []
|
||||
|
||||
first_block = [
|
||||
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
|
||||
] # Input layer.
|
||||
# First set of blocks preserve channel count.
|
||||
for _ in range(num_res_blocks[-1]):
|
||||
first_block.append(
|
||||
block_fn(
|
||||
ch[-1],
|
||||
has_attention=has_attention[-1],
|
||||
causal=causal,
|
||||
**block_kwargs,
|
||||
)
|
||||
)
|
||||
blocks.append(nn.Sequential(*first_block))
|
||||
|
||||
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
|
||||
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
|
||||
|
||||
upsample_block_fn = CausalUpsampleBlock
|
||||
|
||||
for i in range(self.num_up_blocks):
|
||||
block = upsample_block_fn(
|
||||
ch[-i - 1],
|
||||
ch[-i - 2],
|
||||
num_res_blocks=num_res_blocks[-i - 2],
|
||||
has_attention=has_attention[-i - 2],
|
||||
temporal_expansion=temporal_expansions[-i - 1],
|
||||
spatial_expansion=spatial_expansions[-i - 1],
|
||||
causal=causal,
|
||||
**block_kwargs,
|
||||
)
|
||||
blocks.append(block)
|
||||
|
||||
assert not output_norm
|
||||
|
||||
# Last block. Preserve channel count.
|
||||
last_block = []
|
||||
for _ in range(num_res_blocks[0]):
|
||||
last_block.append(
|
||||
block_fn(
|
||||
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
|
||||
)
|
||||
)
|
||||
blocks.append(nn.Sequential(*last_block))
|
||||
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
self.output_proj = Conv1x1(ch[0], out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
|
||||
|
||||
Returns:
|
||||
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
|
||||
T + 1 = (t - 1) * 4.
|
||||
H = h * 16, W = w * 16.
|
||||
"""
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
if self.output_nonlinearity == "silu":
|
||||
x = F.silu(x, inplace=not self.training)
|
||||
else:
|
||||
assert (
|
||||
not self.output_nonlinearity
|
||||
) # StyleGAN3 omits the to-RGB nonlinearity.
|
||||
|
||||
return self.output_proj(x).contiguous()
|
||||
|
||||
class LatentDistribution:
|
||||
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
|
||||
"""Initialize latent distribution.
|
||||
|
||||
Args:
|
||||
mean: Mean of the distribution. Shape: [B, C, T, H, W].
|
||||
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
|
||||
"""
|
||||
assert mean.shape == logvar.shape
|
||||
self.mean = mean
|
||||
self.logvar = logvar
|
||||
|
||||
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
|
||||
if temperature == 0.0:
|
||||
return self.mean
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
|
||||
else:
|
||||
assert noise.device == self.mean.device
|
||||
noise = noise.to(self.mean.dtype)
|
||||
|
||||
if temperature != 1.0:
|
||||
raise NotImplementedError(f"Temperature {temperature} is not supported.")
|
||||
|
||||
# Just Gaussian sample with no scaling of variance.
|
||||
return noise * torch.exp(self.logvar * 0.5) + self.mean
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
in_channels: int,
|
||||
base_channels: int,
|
||||
channel_multipliers: List[int],
|
||||
num_res_blocks: List[int],
|
||||
latent_dim: int,
|
||||
temporal_reductions: List[int],
|
||||
spatial_reductions: List[int],
|
||||
prune_bottlenecks: List[bool],
|
||||
has_attentions: List[bool],
|
||||
affine: bool = True,
|
||||
bias: bool = True,
|
||||
input_is_conv_1x1: bool = False,
|
||||
padding_mode: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.temporal_reductions = temporal_reductions
|
||||
self.spatial_reductions = spatial_reductions
|
||||
self.base_channels = base_channels
|
||||
self.channel_multipliers = channel_multipliers
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.latent_dim = latent_dim
|
||||
|
||||
self.fourier_features = FourierFeatures()
|
||||
ch = [mult * base_channels for mult in channel_multipliers]
|
||||
num_down_blocks = len(ch) - 1
|
||||
assert len(num_res_blocks) == num_down_blocks + 2
|
||||
|
||||
layers = (
|
||||
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
|
||||
if not input_is_conv_1x1
|
||||
else [Conv1x1(in_channels, ch[0])]
|
||||
)
|
||||
|
||||
assert len(prune_bottlenecks) == num_down_blocks + 2
|
||||
assert len(has_attentions) == num_down_blocks + 2
|
||||
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
|
||||
|
||||
for _ in range(num_res_blocks[0]):
|
||||
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
|
||||
prune_bottlenecks = prune_bottlenecks[1:]
|
||||
has_attentions = has_attentions[1:]
|
||||
|
||||
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
|
||||
for i in range(num_down_blocks):
|
||||
layer = DownsampleBlock(
|
||||
ch[i],
|
||||
ch[i + 1],
|
||||
num_res_blocks=num_res_blocks[i + 1],
|
||||
temporal_reduction=temporal_reductions[i],
|
||||
spatial_reduction=spatial_reductions[i],
|
||||
prune_bottleneck=prune_bottlenecks[i],
|
||||
has_attention=has_attentions[i],
|
||||
affine=affine,
|
||||
bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
)
|
||||
|
||||
layers.append(layer)
|
||||
|
||||
# Additional blocks.
|
||||
for _ in range(num_res_blocks[-1]):
|
||||
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
# Output layers.
|
||||
self.output_norm = norm_fn(ch[-1])
|
||||
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
|
||||
|
||||
@property
|
||||
def temporal_downsample(self):
|
||||
return math.prod(self.temporal_reductions)
|
||||
|
||||
@property
|
||||
def spatial_downsample(self):
|
||||
return math.prod(self.spatial_reductions)
|
||||
|
||||
def forward(self, x) -> LatentDistribution:
|
||||
"""Forward pass.
|
||||
|
||||
Args:
|
||||
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
|
||||
|
||||
Returns:
|
||||
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
|
||||
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
|
||||
logvar: Shape: [B, latent_dim, t, h, w].
|
||||
"""
|
||||
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
|
||||
x = self.fourier_features(x)
|
||||
|
||||
x = self.layers(x)
|
||||
|
||||
x = self.output_norm(x)
|
||||
x = F.silu(x, inplace=True)
|
||||
x = self.output_proj(x)
|
||||
|
||||
means, logvar = torch.chunk(x, 2, dim=1)
|
||||
|
||||
assert means.ndim == 5
|
||||
assert logvar.shape == means.shape
|
||||
assert means.size(1) == self.latent_dim
|
||||
|
||||
return LatentDistribution(means, logvar)
|
||||
|
||||
|
||||
class VideoVAE(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.encoder = Encoder(
|
||||
in_channels=15,
|
||||
base_channels=64,
|
||||
channel_multipliers=[1, 2, 4, 6],
|
||||
num_res_blocks=[3, 3, 4, 6, 3],
|
||||
latent_dim=12,
|
||||
temporal_reductions=[1, 2, 3],
|
||||
spatial_reductions=[2, 2, 2],
|
||||
prune_bottlenecks=[False, False, False, False, False],
|
||||
has_attentions=[False, True, True, True, True],
|
||||
affine=True,
|
||||
bias=True,
|
||||
input_is_conv_1x1=True,
|
||||
padding_mode="replicate"
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
out_channels=3,
|
||||
base_channels=128,
|
||||
channel_multipliers=[1, 2, 4, 6],
|
||||
temporal_expansions=[1, 2, 3],
|
||||
spatial_expansions=[2, 2, 2],
|
||||
num_res_blocks=[3, 3, 4, 6, 3],
|
||||
latent_dim=12,
|
||||
has_attention=[False, False, False, False, False],
|
||||
padding_mode="replicate",
|
||||
output_norm=False,
|
||||
nonlinearity="silu",
|
||||
output_nonlinearity="silu",
|
||||
causal=True,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
return self.encoder(x).mode()
|
||||
|
||||
def decode(self, x):
|
||||
return self.decoder(x)
|
||||
218
comfy/ldm/hydit/attn_layers.py
Normal file
218
comfy/ldm/hydit/attn_layers.py
Normal file
@@ -0,0 +1,218 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Tuple, Union, Optional
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
|
||||
"""
|
||||
Reshape frequency tensor for broadcasting it with another tensor.
|
||||
|
||||
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
||||
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
||||
|
||||
Args:
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
|
||||
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Reshaped frequency tensor.
|
||||
|
||||
Raises:
|
||||
AssertionError: If the frequency tensor doesn't match the expected shape.
|
||||
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
||||
"""
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
|
||||
if isinstance(freqs_cis, tuple):
|
||||
# freqs_cis: (cos, sin) in real space
|
||||
if head_first:
|
||||
assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
|
||||
else:
|
||||
# freqs_cis: values in complex space
|
||||
if head_first:
|
||||
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
else:
|
||||
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: Optional[torch.Tensor],
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
head_first: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor.
|
||||
|
||||
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
||||
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
||||
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
||||
returned as real tensors.
|
||||
|
||||
Args:
|
||||
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
|
||||
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
|
||||
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials.
|
||||
head_first (bool): head dimension first (except batch dim) or not.
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
|
||||
"""
|
||||
xk_out = None
|
||||
if isinstance(freqs_cis, tuple):
|
||||
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
|
||||
xq_out = (xq * cos + rotate_half(xq) * sin)
|
||||
if xk is not None:
|
||||
xk_out = (xk * cos + rotate_half(xk) * sin)
|
||||
else:
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
|
||||
if xk is not None:
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
|
||||
|
||||
return xq_out, xk_out
|
||||
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
"""
|
||||
Use QK Normalization.
|
||||
"""
|
||||
def __init__(self,
|
||||
qdim,
|
||||
kdim,
|
||||
num_heads,
|
||||
qkv_bias=True,
|
||||
qk_norm=False,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.qdim = qdim
|
||||
self.kdim = kdim
|
||||
self.num_heads = num_heads
|
||||
assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
|
||||
self.head_dim = self.qdim // num_heads
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
self.q_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.kv_proj = operations.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
|
||||
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, y, freqs_cis_img=None):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
|
||||
y: torch.Tensor
|
||||
(batch, seqlen2, hidden_dim2)
|
||||
freqs_cis_img: torch.Tensor
|
||||
(batch, hidden_dim // 2), RoPE for image
|
||||
"""
|
||||
b, s1, c = x.shape # [b, s1, D]
|
||||
_, s2, c = y.shape # [b, s2, 1024]
|
||||
|
||||
q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d]
|
||||
kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim) # [b, s2, 2, h, d]
|
||||
k, v = kv.unbind(dim=2) # [b, s, h, d]
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
|
||||
assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
|
||||
q = qq
|
||||
|
||||
q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C
|
||||
k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2
|
||||
v = v.transpose(-2, -3).contiguous()
|
||||
|
||||
context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
|
||||
out = self.out_proj(context) # context.reshape - B, L1, -1
|
||||
out = self.proj_drop(out)
|
||||
|
||||
out_tuple = (out,)
|
||||
|
||||
return out_tuple
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
We rename some layer names to align with flash attention
|
||||
"""
|
||||
def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., attn_precision=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.attn_precision = attn_precision
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
|
||||
self.head_dim = self.dim // num_heads
|
||||
# This assertion is aligned with flash attention
|
||||
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
|
||||
self.scale = self.head_dim ** -0.5
|
||||
|
||||
# qkv --> Wqkv
|
||||
self.Wqkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
# TODO: eps should be 1 / 65530 if using fp16
|
||||
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.out_proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, freqs_cis_img=None):
|
||||
B, N, C = x.shape
|
||||
qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) # [3, b, h, s, d]
|
||||
q, k, v = qkv.unbind(0) # [b, h, s, d]
|
||||
q = self.q_norm(q) # [b, h, s, d]
|
||||
k = self.k_norm(k) # [b, h, s, d]
|
||||
|
||||
# Apply RoPE if needed
|
||||
if freqs_cis_img is not None:
|
||||
qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True)
|
||||
assert qq.shape == q.shape and kk.shape == k.shape, \
|
||||
f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
|
||||
q, k = qq, kk
|
||||
|
||||
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
|
||||
x = self.out_proj(x)
|
||||
x = self.proj_drop(x)
|
||||
|
||||
out_tuple = (x,)
|
||||
|
||||
return out_tuple
|
||||
321
comfy/ldm/hydit/controlnet.py
Normal file
321
comfy/ldm/hydit/controlnet.py
Normal file
@@ -0,0 +1,321 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch.utils import checkpoint
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import (
|
||||
Mlp,
|
||||
TimestepEmbedder,
|
||||
PatchEmbed,
|
||||
RMSNorm,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from .poolers import AttentionPool
|
||||
|
||||
import comfy.latent_formats
|
||||
from .models import HunYuanDiTBlock, calc_rope
|
||||
|
||||
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
||||
|
||||
|
||||
class HunYuanControlNet(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: tuple = 128,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1408,
|
||||
depth: int = 40,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.3637,
|
||||
text_states_dim=1024,
|
||||
text_states_dim_t5=2048,
|
||||
text_len=77,
|
||||
text_len_t5=256,
|
||||
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond=False,
|
||||
use_style_cond=False,
|
||||
learn_sigma=True,
|
||||
norm="layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
self.latent_format = comfy.latent_formats.SDXL
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5,
|
||||
self.text_states_dim_t5 * 4,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
nn.SiLU(),
|
||||
nn.Linear(
|
||||
self.text_states_dim_t5 * 4,
|
||||
self.text_states_dim,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.randn(
|
||||
self.text_len + self.text_len_t5,
|
||||
self.text_states_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(
|
||||
self.text_len_t5,
|
||||
self.text_states_dim_t5,
|
||||
num_heads=8,
|
||||
output_dim=pooler_out_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = nn.Embedding(
|
||||
1, hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(
|
||||
input_size,
|
||||
patch_size,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(
|
||||
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device
|
||||
),
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
|
||||
# Image embedding
|
||||
num_patches = self.x_embedder.num_patches
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
HunYuanDiTBlock(
|
||||
hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=False,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for _ in range(19)
|
||||
]
|
||||
)
|
||||
|
||||
# Input zero linear for the first block
|
||||
self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
|
||||
# Output zero linear for the every block
|
||||
self.after_proj_list = nn.ModuleList(
|
||||
[
|
||||
|
||||
operations.Linear(
|
||||
self.hidden_size, self.hidden_size, dtype=dtype, device=device
|
||||
)
|
||||
for _ in range(len(self.blocks))
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
hint,
|
||||
timesteps,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
**kwarg,
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
condition = hint
|
||||
if condition.shape[0] == 1:
|
||||
condition = torch.repeat_interleave(condition, x.shape[0], dim=0)
|
||||
|
||||
text_states = context # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:, -self.text_len :] = torch.where(
|
||||
text_states_mask[:, -self.text_len :].unsqueeze(2),
|
||||
text_states[:, -self.text_len :],
|
||||
padding[: self.text_len],
|
||||
)
|
||||
text_states_t5[:, -self.text_len_t5 :] = torch.where(
|
||||
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2),
|
||||
text_states_t5[:, -self.text_len_t5 :],
|
||||
padding[self.text_len :],
|
||||
)
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
|
||||
# _, _, oh, ow = x.shape
|
||||
# th, tw = oh // self.patch_size, ow // self.patch_size
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(
|
||||
x, self.patch_size, self.hidden_size // self.num_heads
|
||||
) # (cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(timesteps, dtype=self.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
# if image_meta_size is not None:
|
||||
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
|
||||
# if image_meta_size.dtype != self.dtype:
|
||||
# image_meta_size = image_meta_size.half()
|
||||
# image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if style is not None:
|
||||
style_embedding = self.style_embedder(style)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
# ========================= Deal with Condition =========================
|
||||
condition = self.x_embedder(condition)
|
||||
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
controls = []
|
||||
x = x + self.before_proj(condition) # add condition
|
||||
for layer, block in enumerate(self.blocks):
|
||||
x = block(x, c, text_states, freqs_cis_img)
|
||||
controls.append(self.after_proj_list[layer](x)) # zero linear for output
|
||||
|
||||
return {"output": controls}
|
||||
410
comfy/ldm/hydit/models.py
Normal file
410
comfy/ldm/hydit/models.py
Normal file
@@ -0,0 +1,410 @@
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import comfy.ops
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
|
||||
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
|
||||
from torch.utils import checkpoint
|
||||
|
||||
from .attn_layers import Attention, CrossAttention
|
||||
from .poolers import AttentionPool
|
||||
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
||||
|
||||
def calc_rope(x, patch_size, head_size):
|
||||
th = (x.shape[2] + (patch_size // 2)) // patch_size
|
||||
tw = (x.shape[3] + (patch_size // 2)) // patch_size
|
||||
base_size = 512 // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
|
||||
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
|
||||
rope = (rope[0].to(x), rope[1].to(x))
|
||||
return rope
|
||||
|
||||
|
||||
def modulate(x, shift, scale):
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
class HunYuanDiTBlock(nn.Module):
|
||||
"""
|
||||
A HunYuanDiT block with `add` conditioning.
|
||||
"""
|
||||
def __init__(self,
|
||||
hidden_size,
|
||||
c_emb_size,
|
||||
num_heads,
|
||||
mlp_ratio=4.0,
|
||||
text_states_dim=1024,
|
||||
qk_norm=False,
|
||||
norm_type="layer",
|
||||
skip=False,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
use_ele_affine = True
|
||||
|
||||
if norm_type == "layer":
|
||||
norm_layer = operations.LayerNorm
|
||||
elif norm_type == "rms":
|
||||
norm_layer = RMSNorm
|
||||
else:
|
||||
raise ValueError(f"Unknown norm_type: {norm_type}")
|
||||
|
||||
# ========================= Self-Attention =========================
|
||||
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= FFN =========================
|
||||
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# ========================= Add =========================
|
||||
# Simply use add like SDXL.
|
||||
self.default_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
# ========================= Cross-Attention =========================
|
||||
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
|
||||
qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
# ========================= Skip Connection =========================
|
||||
if skip:
|
||||
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device)
|
||||
else:
|
||||
self.skip_linear = None
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
# Long Skip Connection
|
||||
if self.skip_linear is not None:
|
||||
cat = torch.cat([x, skip], dim=-1)
|
||||
if cat.dtype != x.dtype:
|
||||
cat = cat.to(x.dtype)
|
||||
cat = self.skip_norm(cat)
|
||||
x = self.skip_linear(cat)
|
||||
|
||||
# Self-Attention
|
||||
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
|
||||
attn_inputs = (
|
||||
self.norm1(x) + shift_msa, freq_cis_img,
|
||||
)
|
||||
x = x + self.attn1(*attn_inputs)[0]
|
||||
|
||||
# Cross-Attention
|
||||
cross_inputs = (
|
||||
self.norm3(x), text_states, freq_cis_img
|
||||
)
|
||||
x = x + self.attn2(*cross_inputs)[0]
|
||||
|
||||
# FFN Layer
|
||||
mlp_inputs = self.norm2(x)
|
||||
x = x + self.mlp(mlp_inputs)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip)
|
||||
return self._forward(x, c, text_states, freq_cis_img, skip)
|
||||
|
||||
|
||||
class FinalLayer(nn.Module):
|
||||
"""
|
||||
The final layer of HunYuanDiT.
|
||||
"""
|
||||
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class HunYuanDiT(nn.Module):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args: argparse.Namespace
|
||||
The arguments parsed by argparse.
|
||||
input_size: tuple
|
||||
The size of the input image.
|
||||
patch_size: int
|
||||
The size of the patch.
|
||||
in_channels: int
|
||||
The number of input channels.
|
||||
hidden_size: int
|
||||
The hidden size of the transformer backbone.
|
||||
depth: int
|
||||
The number of transformer blocks.
|
||||
num_heads: int
|
||||
The number of attention heads.
|
||||
mlp_ratio: float
|
||||
The ratio of the hidden size of the MLP in the transformer block.
|
||||
log_fn: callable
|
||||
The logging function.
|
||||
"""
|
||||
#@register_to_config
|
||||
def __init__(self,
|
||||
input_size: tuple = 32,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
hidden_size: int = 1152,
|
||||
depth: int = 28,
|
||||
num_heads: int = 16,
|
||||
mlp_ratio: float = 4.0,
|
||||
text_states_dim = 1024,
|
||||
text_states_dim_t5 = 2048,
|
||||
text_len = 77,
|
||||
text_len_t5 = 256,
|
||||
qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details.
|
||||
size_cond = False,
|
||||
use_style_cond = False,
|
||||
learn_sigma = True,
|
||||
norm = "layer",
|
||||
log_fn: callable = print,
|
||||
attn_precision=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.log_fn = log_fn
|
||||
self.depth = depth
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.text_states_dim = text_states_dim
|
||||
self.text_states_dim_t5 = text_states_dim_t5
|
||||
self.text_len = text_len
|
||||
self.text_len_t5 = text_len_t5
|
||||
self.size_cond = size_cond
|
||||
self.use_style_cond = use_style_cond
|
||||
self.norm = norm
|
||||
self.dtype = dtype
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
|
||||
self.mlp_t5 = nn.Sequential(
|
||||
operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
# learnable replace
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device))
|
||||
|
||||
# Attention pooling
|
||||
pooler_out_dim = 1024
|
||||
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# Dimension of the extra input vectors
|
||||
self.extra_in_dim = pooler_out_dim
|
||||
|
||||
if self.size_cond:
|
||||
# Image size and crop size conditions
|
||||
self.extra_in_dim += 6 * 256
|
||||
|
||||
if self.use_style_cond:
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
|
||||
self.extra_in_dim += hidden_size
|
||||
|
||||
# Text embedding for `add`
|
||||
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.extra_embedder = nn.Sequential(
|
||||
operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
# Image embedding
|
||||
num_patches = self.x_embedder.num_patches
|
||||
|
||||
# HUnYuanDiT Blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
HunYuanDiTBlock(hidden_size=hidden_size,
|
||||
c_emb_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
text_states_dim=self.text_states_dim,
|
||||
qk_norm=qk_norm,
|
||||
norm_type=self.norm,
|
||||
skip=layer > depth // 2,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for layer in range(depth)
|
||||
])
|
||||
|
||||
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
self.unpatchify_channels = self.out_channels
|
||||
|
||||
|
||||
|
||||
def forward(self,
|
||||
x,
|
||||
t,
|
||||
context,#encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
return_dict=False,
|
||||
control=None,
|
||||
transformer_options=None,
|
||||
):
|
||||
"""
|
||||
Forward pass of the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: torch.Tensor
|
||||
(B, D, H, W)
|
||||
t: torch.Tensor
|
||||
(B)
|
||||
encoder_hidden_states: torch.Tensor
|
||||
CLIP text embedding, (B, L_clip, D)
|
||||
text_embedding_mask: torch.Tensor
|
||||
CLIP text embedding mask, (B, L_clip)
|
||||
encoder_hidden_states_t5: torch.Tensor
|
||||
T5 text embedding, (B, L_t5, D)
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
T5 text embedding mask, (B, L_t5)
|
||||
image_meta_size: torch.Tensor
|
||||
(B, 6)
|
||||
style: torch.Tensor
|
||||
(B)
|
||||
cos_cis_img: torch.Tensor
|
||||
sin_cis_img: torch.Tensor
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
#import pdb
|
||||
#pdb.set_trace()
|
||||
encoder_hidden_states = context
|
||||
text_states = encoder_hidden_states # 2,77,1024
|
||||
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
|
||||
text_states_mask = text_embedding_mask.bool() # 2,77
|
||||
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
|
||||
b_t5, l_t5, c_t5 = text_states_t5.shape
|
||||
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
|
||||
|
||||
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
|
||||
|
||||
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
|
||||
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
|
||||
|
||||
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024
|
||||
# clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)
|
||||
|
||||
_, _, oh, ow = x.shape
|
||||
th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size
|
||||
|
||||
|
||||
# Get image RoPE embedding according to `reso`lution.
|
||||
freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img)
|
||||
|
||||
# ========================= Build time and image embedding =========================
|
||||
t = self.t_embedder(t, dtype=x.dtype)
|
||||
x = self.x_embedder(x)
|
||||
|
||||
# ========================= Concatenate all extra vectors =========================
|
||||
# Build text tokens with pooling
|
||||
extra_vec = self.pooler(encoder_hidden_states_t5)
|
||||
|
||||
# Build image meta size tokens if applicable
|
||||
if self.size_cond:
|
||||
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) # [B * 6, 256]
|
||||
image_meta_size = image_meta_size.view(-1, 6 * 256)
|
||||
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
|
||||
|
||||
# Build style tokens
|
||||
if self.use_style_cond:
|
||||
if style is None:
|
||||
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
|
||||
style_embedding = self.style_embedder(style, out_dtype=x.dtype)
|
||||
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
c = t + self.extra_embedder(extra_vec) # [B, D]
|
||||
|
||||
controls = None
|
||||
if control:
|
||||
controls = control.get("output", None)
|
||||
# ========================= Forward pass through HunYuanDiT blocks =========================
|
||||
skips = []
|
||||
for layer, block in enumerate(self.blocks):
|
||||
if layer > self.depth // 2:
|
||||
if controls is not None:
|
||||
skip = skips.pop() + controls.pop().to(dtype=x.dtype)
|
||||
else:
|
||||
skip = skips.pop()
|
||||
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
|
||||
else:
|
||||
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
|
||||
|
||||
if layer < (self.depth // 2 - 1):
|
||||
skips.append(x)
|
||||
if controls is not None and len(controls) != 0:
|
||||
raise ValueError("The number of controls is not equal to the number of skip connections.")
|
||||
|
||||
# ========================= Final layer =========================
|
||||
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W)
|
||||
|
||||
if return_dict:
|
||||
return {'x': x}
|
||||
if self.learn_sigma:
|
||||
return x[:,:self.out_channels // 2,:oh,:ow]
|
||||
return x[:,:,:oh,:ow]
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.unpatchify_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
# h = w = int(x.shape[1] ** 0.5)
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
37
comfy/ldm/hydit/poolers.py
Normal file
37
comfy/ldm/hydit/poolers.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
import comfy.ops
|
||||
|
||||
class AttentionPool(nn.Module):
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.empty(spacial_dim + 1, embed_dim, dtype=dtype, device=device))
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device)
|
||||
self.c_proj = operations.Linear(embed_dim, output_dim or embed_dim, dtype=dtype, device=device)
|
||||
self.num_heads = num_heads
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def forward(self, x):
|
||||
x = x[:,:self.positional_embedding.shape[0] - 1]
|
||||
x = x.permute(1, 0, 2) # NLC -> LNC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
||||
x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC
|
||||
|
||||
q = self.q_proj(x[:1])
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
batch_size = q.shape[1]
|
||||
head_dim = self.embed_dim // self.num_heads
|
||||
q = q.view(1, batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
k = k.view(k.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
v = v.view(v.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim)
|
||||
|
||||
attn_output = optimized_attention(q, k, v, self.num_heads, skip_reshape=True).transpose(0, 1)
|
||||
|
||||
attn_output = self.c_proj(attn_output)
|
||||
return attn_output.squeeze(0)
|
||||
224
comfy/ldm/hydit/posemb_layers.py
Normal file
224
comfy/ldm/hydit/posemb_layers.py
Normal file
@@ -0,0 +1,224 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import Union
|
||||
|
||||
|
||||
def _to_tuple(x):
|
||||
if isinstance(x, int):
|
||||
return x, x
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
def get_fill_resize_and_crop(src, tgt):
|
||||
th, tw = _to_tuple(tgt)
|
||||
h, w = _to_tuple(src)
|
||||
|
||||
tr = th / tw # base resolution
|
||||
r = h / w # target resolution
|
||||
|
||||
# resize
|
||||
if r > tr:
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h)) # resize the target resolution down based on the base resolution
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
def get_meshgrid(start, *args):
|
||||
if len(args) == 0:
|
||||
# start is grid_size
|
||||
num = _to_tuple(start)
|
||||
start = (0, 0)
|
||||
stop = num
|
||||
elif len(args) == 1:
|
||||
# start is start, args[0] is stop, step is 1
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = (stop[0] - start[0], stop[1] - start[1])
|
||||
elif len(args) == 2:
|
||||
# start is start, args[0] is stop, args[1] is num
|
||||
start = _to_tuple(start)
|
||||
stop = _to_tuple(args[0])
|
||||
num = _to_tuple(args[1])
|
||||
else:
|
||||
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
||||
|
||||
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32)
|
||||
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
return grid
|
||||
|
||||
#################################################################################
|
||||
# Sine/Cosine Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
||||
|
||||
def get_2d_sincos_pos_embed(embed_dim, start, *args, cls_token=False, extra_tokens=0):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
# grid_h = np.arange(grid_size, dtype=np.float32)
|
||||
# grid_w = np.arange(grid_size, dtype=np.float32)
|
||||
# grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
# grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token and extra_tokens > 0:
|
||||
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (W,H)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000**omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
|
||||
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
return emb
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Rotary Positional Embedding Functions #
|
||||
#################################################################################
|
||||
# https://github.com/facebookresearch/llama/blob/main/llama/model.py#L443
|
||||
|
||||
def get_2d_rotary_pos_embed(embed_dim, start, *args, use_real=True):
|
||||
"""
|
||||
This is a 2d version of precompute_freqs_cis, which is a RoPE for image tokens with 2d structure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embed_dim: int
|
||||
embedding dimension size
|
||||
start: int or tuple of int
|
||||
If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, step is 1;
|
||||
If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
||||
use_real: bool
|
||||
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos_embed: torch.Tensor
|
||||
[HW, D/2]
|
||||
"""
|
||||
grid = get_meshgrid(start, *args) # [2, H, w]
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]]) # Returns a sampling matrix with the same resolution as the target resolution
|
||||
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
||||
assert embed_dim % 4 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
|
||||
if use_real:
|
||||
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
|
||||
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
|
||||
return cos, sin
|
||||
else:
|
||||
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
|
||||
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
||||
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
||||
The returned tensor contains complex values in complex64 data type.
|
||||
|
||||
Args:
|
||||
dim (int): Dimension of the frequency tensor.
|
||||
pos (np.ndarray, int): Position indices for the frequency tensor. [S] or scalar
|
||||
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
||||
use_real (bool, optional): If True, return real part and imaginary part separately.
|
||||
Otherwise, return complex numbers.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
||||
|
||||
"""
|
||||
if isinstance(pos, int):
|
||||
pos = np.arange(pos)
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
||||
if use_real:
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
|
||||
|
||||
|
||||
def calc_sizes(rope_img, patch_size, th, tw):
|
||||
if rope_img == 'extend':
|
||||
# Expansion mode
|
||||
sub_args = [(th, tw)]
|
||||
elif rope_img.startswith('base'):
|
||||
# Based on the specified dimensions, other dimensions are obtained through interpolation.
|
||||
base_size = int(rope_img[4:]) // 8 // patch_size
|
||||
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
||||
sub_args = [start, stop, (th, tw)]
|
||||
else:
|
||||
raise ValueError(f"Unknown rope_img: {rope_img}")
|
||||
return sub_args
|
||||
|
||||
|
||||
def init_image_posemb(rope_img,
|
||||
resolutions,
|
||||
patch_size,
|
||||
hidden_size,
|
||||
num_heads,
|
||||
log_fn,
|
||||
rope_real=True,
|
||||
):
|
||||
freqs_cis_img = {}
|
||||
for reso in resolutions:
|
||||
th, tw = reso.height // 8 // patch_size, reso.width // 8 // patch_size
|
||||
sub_args = calc_sizes(rope_img, patch_size, th, tw)
|
||||
freqs_cis_img[str(reso)] = get_2d_rotary_pos_embed(hidden_size // num_heads, *sub_args, use_real=rope_real)
|
||||
log_fn(f" Using image RoPE ({rope_img}) ({'real' if rope_real else 'complex'}): {sub_args} | ({reso}) "
|
||||
f"{freqs_cis_img[str(reso)][0].shape if rope_real else freqs_cis_img[str(reso)].shape}")
|
||||
return freqs_cis_img
|
||||
226
comfy/ldm/models/autoencoder.py
Normal file
226
comfy/ldm/models/autoencoder.py
Normal file
@@ -0,0 +1,226 @@
|
||||
import torch
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.ldm.modules.ema import LitEma
|
||||
import comfy.ops
|
||||
|
||||
class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
def __init__(self, sample: bool = True):
|
||||
super().__init__()
|
||||
self.sample = sample
|
||||
|
||||
def get_trainable_parameters(self) -> Any:
|
||||
yield from ()
|
||||
|
||||
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
||||
log = dict()
|
||||
posterior = DiagonalGaussianDistribution(z)
|
||||
if self.sample:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
kl_loss = posterior.kl()
|
||||
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
||||
log["kl_loss"] = kl_loss
|
||||
return z, log
|
||||
|
||||
|
||||
class AbstractAutoencoder(torch.nn.Module):
|
||||
"""
|
||||
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
|
||||
unCLIP models, etc. Hence, it is fairly general, and specific features
|
||||
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ema_decay: Union[None, float] = None,
|
||||
monitor: Union[None, str] = None,
|
||||
input_key: str = "jpg",
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_key = input_key
|
||||
self.use_ema = ema_decay is not None
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self, decay=ema_decay)
|
||||
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
def get_input(self, batch) -> Any:
|
||||
raise NotImplementedError()
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
# for EMA computation
|
||||
if self.use_ema:
|
||||
self.model_ema(self)
|
||||
|
||||
@contextmanager
|
||||
def ema_scope(self, context=None):
|
||||
if self.use_ema:
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
logpy.info(f"{context}: Switched to EMA weights")
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
logpy.info(f"{context}: Restored training weights")
|
||||
|
||||
def encode(self, *args, **kwargs) -> torch.Tensor:
|
||||
raise NotImplementedError("encode()-method of abstract base class called")
|
||||
|
||||
def decode(self, *args, **kwargs) -> torch.Tensor:
|
||||
raise NotImplementedError("decode()-method of abstract base class called")
|
||||
|
||||
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
||||
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
||||
return get_obj_from_str(cfg["target"])(
|
||||
params, lr=lr, **cfg.get("params", dict())
|
||||
)
|
||||
|
||||
def configure_optimizers(self) -> Any:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class AutoencodingEngine(AbstractAutoencoder):
|
||||
"""
|
||||
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
|
||||
(we also restore them explicitly as special cases for legacy reasons).
|
||||
Regularizations such as KL or VQ are moved to the regularizer class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
encoder_config: Dict,
|
||||
decoder_config: Dict,
|
||||
regularizer_config: Dict,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
|
||||
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
|
||||
self.regularization: AbstractRegularizer = instantiate_from_config(
|
||||
regularizer_config
|
||||
)
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.get_last_layer()
|
||||
|
||||
def encode(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
return_reg_log: bool = False,
|
||||
unregularized: bool = False,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
||||
z = self.encoder(x)
|
||||
if unregularized:
|
||||
return z, dict()
|
||||
z, reg_log = self.regularization(z)
|
||||
if return_reg_log:
|
||||
return z, reg_log
|
||||
return z
|
||||
|
||||
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
x = self.decoder(z, **kwargs)
|
||||
return x
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, **additional_decode_kwargs
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
|
||||
z, reg_log = self.encode(x, return_reg_log=True)
|
||||
dec = self.decode(z, **additional_decode_kwargs)
|
||||
return z, dec, reg_log
|
||||
|
||||
|
||||
class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
def __init__(self, embed_dim: int, **kwargs):
|
||||
self.max_batch_size = kwargs.pop("max_batch_size", None)
|
||||
ddconfig = kwargs.pop("ddconfig")
|
||||
super().__init__(
|
||||
encoder_config={
|
||||
"target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
|
||||
"params": ddconfig,
|
||||
},
|
||||
decoder_config={
|
||||
"target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
|
||||
"params": ddconfig,
|
||||
},
|
||||
**kwargs,
|
||||
)
|
||||
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
|
||||
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
||||
(1 + ddconfig["double_z"]) * embed_dim,
|
||||
1,
|
||||
)
|
||||
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def get_autoencoder_params(self) -> list:
|
||||
params = super().get_autoencoder_params()
|
||||
return params
|
||||
|
||||
def encode(
|
||||
self, x: torch.Tensor, return_reg_log: bool = False
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
||||
if self.max_batch_size is None:
|
||||
z = self.encoder(x)
|
||||
z = self.quant_conv(z)
|
||||
else:
|
||||
N = x.shape[0]
|
||||
bs = self.max_batch_size
|
||||
n_batches = int(math.ceil(N / bs))
|
||||
z = list()
|
||||
for i_batch in range(n_batches):
|
||||
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
|
||||
z_batch = self.quant_conv(z_batch)
|
||||
z.append(z_batch)
|
||||
z = torch.cat(z, 0)
|
||||
|
||||
z, reg_log = self.regularization(z)
|
||||
if return_reg_log:
|
||||
return z, reg_log
|
||||
return z
|
||||
|
||||
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
|
||||
if self.max_batch_size is None:
|
||||
dec = self.post_quant_conv(z)
|
||||
dec = self.decoder(dec, **decoder_kwargs)
|
||||
else:
|
||||
N = z.shape[0]
|
||||
bs = self.max_batch_size
|
||||
n_batches = int(math.ceil(N / bs))
|
||||
dec = list()
|
||||
for i_batch in range(n_batches):
|
||||
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
|
||||
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
|
||||
dec.append(dec_batch)
|
||||
dec = torch.cat(dec, 0)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
class AutoencoderKL(AutoencodingEngineLegacy):
|
||||
def __init__(self, **kwargs):
|
||||
if "lossconfig" in kwargs:
|
||||
kwargs["loss_config"] = kwargs.pop("lossconfig")
|
||||
super().__init__(
|
||||
regularizer_config={
|
||||
"target": (
|
||||
"comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
|
||||
)
|
||||
},
|
||||
**kwargs,
|
||||
)
|
||||
877
comfy/ldm/modules/attention.py
Normal file
877
comfy/ldm/modules/attention.py
Normal file
@@ -0,0 +1,877 @@
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from typing import Optional
|
||||
import logging
|
||||
|
||||
from .diffusionmodules.util import AlphaBlender, timestep_embedding
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
from comfy import model_management
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
|
||||
|
||||
def get_attn_precision(attn_precision):
|
||||
if args.dont_upcast_attention:
|
||||
return None
|
||||
if FORCE_UPCAST_ATTENTION_DTYPE is not None:
|
||||
return FORCE_UPCAST_ATTENTION_DTYPE
|
||||
return attn_precision
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d
|
||||
|
||||
|
||||
def max_neg_value(t):
|
||||
return -torch.finfo(t.dtype).max
|
||||
|
||||
|
||||
def init_(tensor):
|
||||
dim = tensor.shape[-1]
|
||||
std = 1 / math.sqrt(dim)
|
||||
tensor.uniform_(-std, std)
|
||||
return tensor
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
def Normalize(in_channels, dtype=None, device=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
|
||||
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
attn_precision = get_attn_precision(attn_precision)
|
||||
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
h = heads
|
||||
if skip_reshape:
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b * heads, -1, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
else:
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, -1, heads, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, -1, dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if attn_precision == torch.float32:
|
||||
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
|
||||
else:
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
||||
|
||||
del q, k
|
||||
|
||||
if exists(mask):
|
||||
if mask.dtype == torch.bool:
|
||||
mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
else:
|
||||
if len(mask.shape) == 2:
|
||||
bs = 1
|
||||
else:
|
||||
bs = mask.shape[0]
|
||||
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
||||
sim.add_(mask)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
attn_precision = get_attn_precision(attn_precision)
|
||||
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = query.shape
|
||||
else:
|
||||
b, _, dim_head = query.shape
|
||||
dim_head //= heads
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
if skip_reshape:
|
||||
query = query.reshape(b * heads, -1, dim_head)
|
||||
value = value.reshape(b * heads, -1, dim_head)
|
||||
key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
|
||||
else:
|
||||
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
||||
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
||||
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
|
||||
|
||||
|
||||
dtype = query.dtype
|
||||
upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
|
||||
if upcast_attention:
|
||||
bytes_per_token = torch.finfo(torch.float32).bits//8
|
||||
else:
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
|
||||
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
||||
|
||||
kv_chunk_size_min = None
|
||||
kv_chunk_size = None
|
||||
query_chunk_size = None
|
||||
|
||||
for x in [4096, 2048, 1024, 512, 256]:
|
||||
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
|
||||
if count >= k_tokens:
|
||||
kv_chunk_size = k_tokens
|
||||
query_chunk_size = x
|
||||
break
|
||||
|
||||
if query_chunk_size is None:
|
||||
query_chunk_size = 512
|
||||
|
||||
if mask is not None:
|
||||
if len(mask.shape) == 2:
|
||||
bs = 1
|
||||
else:
|
||||
bs = mask.shape[0]
|
||||
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
||||
|
||||
hidden_states = efficient_dot_product_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
query_chunk_size=query_chunk_size,
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
kv_chunk_size_min=kv_chunk_size_min,
|
||||
use_checkpoint=False,
|
||||
upcast_attention=upcast_attention,
|
||||
mask=mask,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
|
||||
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
|
||||
return hidden_states
|
||||
|
||||
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
attn_precision = get_attn_precision(attn_precision)
|
||||
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
|
||||
scale = dim_head ** -0.5
|
||||
|
||||
h = heads
|
||||
if skip_reshape:
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b * heads, -1, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
else:
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, -1, heads, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, -1, dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
if attn_precision == torch.float32:
|
||||
element_size = 4
|
||||
upcast = True
|
||||
else:
|
||||
element_size = q.element_size()
|
||||
upcast = False
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
|
||||
modifier = 3
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||
|
||||
if steps > 64:
|
||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
||||
|
||||
if mask is not None:
|
||||
if len(mask.shape) == 2:
|
||||
bs = 1
|
||||
else:
|
||||
bs = mask.shape[0]
|
||||
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
||||
|
||||
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
||||
first_op_done = False
|
||||
cleared_cache = False
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
if upcast:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
|
||||
else:
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
|
||||
|
||||
if mask is not None:
|
||||
if len(mask.shape) == 2:
|
||||
s1 += mask[i:end]
|
||||
else:
|
||||
s1 += mask[:, i:end]
|
||||
|
||||
s2 = s1.softmax(dim=-1).to(v.dtype)
|
||||
del s1
|
||||
first_op_done = True
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
if first_op_done == False:
|
||||
model_management.soft_empty_cache(True)
|
||||
if cleared_cache == False:
|
||||
cleared_cache = True
|
||||
logging.warning("out of memory error, emptying cache and trying again")
|
||||
continue
|
||||
steps *= 2
|
||||
if steps > 64:
|
||||
raise e
|
||||
logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
|
||||
else:
|
||||
raise e
|
||||
|
||||
del q, k, v
|
||||
|
||||
r1 = (
|
||||
r1.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return r1
|
||||
|
||||
BROKEN_XFORMERS = False
|
||||
try:
|
||||
x_vers = xformers.__version__
|
||||
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
|
||||
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
|
||||
except:
|
||||
pass
|
||||
|
||||
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
|
||||
disabled_xformers = False
|
||||
|
||||
if BROKEN_XFORMERS:
|
||||
if b * heads > 65535:
|
||||
disabled_xformers = True
|
||||
|
||||
if not disabled_xformers:
|
||||
if torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
disabled_xformers = True
|
||||
|
||||
if disabled_xformers:
|
||||
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
|
||||
|
||||
if skip_reshape:
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b * heads, -1, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
else:
|
||||
q, k, v = map(
|
||||
lambda t: t.reshape(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
pad = 8 - q.shape[1] % 8
|
||||
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
|
||||
mask_out[:, :, :mask.shape[-1]] = mask
|
||||
mask = mask_out[:, :, :mask.shape[-1]]
|
||||
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
|
||||
|
||||
if skip_reshape:
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, -1, dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
else:
|
||||
out = (
|
||||
out.reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
if model_management.is_nvidia(): #pytorch 2.3 and up seem to have this issue.
|
||||
SDP_BATCH_LIMIT = 2**15
|
||||
else:
|
||||
#TODO: other GPUs ?
|
||||
SDP_BATCH_LIMIT = 2**31
|
||||
|
||||
|
||||
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if SDP_BATCH_LIMIT >= q.shape[0]:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
else:
|
||||
out = torch.empty((q.shape[0], q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
|
||||
for i in range(0, q.shape[0], SDP_BATCH_LIMIT):
|
||||
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(q[i : i + SDP_BATCH_LIMIT], k[i : i + SDP_BATCH_LIMIT], v[i : i + SDP_BATCH_LIMIT], attn_mask=mask, dropout_p=0.0, is_causal=False).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
|
||||
return out
|
||||
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
logging.info("Using xformers cross attention")
|
||||
optimized_attention = attention_xformers
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
logging.info("Using pytorch cross attention")
|
||||
optimized_attention = attention_pytorch
|
||||
else:
|
||||
if args.use_split_cross_attention:
|
||||
logging.info("Using split optimization for cross attention")
|
||||
optimized_attention = attention_split
|
||||
else:
|
||||
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
optimized_attention = attention_sub_quad
|
||||
|
||||
optimized_attention_masked = optimized_attention
|
||||
|
||||
def optimized_attention_for_device(device, mask=False, small_input=False):
|
||||
if small_input:
|
||||
if model_management.pytorch_attention_enabled():
|
||||
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
|
||||
else:
|
||||
return attention_basic
|
||||
|
||||
if device == torch.device("cpu"):
|
||||
return attention_sub_quad
|
||||
|
||||
if mask:
|
||||
return optimized_attention_masked
|
||||
|
||||
return optimized_attention
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
self.attn_precision = attn_precision
|
||||
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
if value is not None:
|
||||
v = self.to_v(value)
|
||||
del value
|
||||
else:
|
||||
v = self.to_v(context)
|
||||
|
||||
if mask is None:
|
||||
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
|
||||
else:
|
||||
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
|
||||
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
|
||||
self.ff_in = ff_in or inner_dim is not None
|
||||
if inner_dim is None:
|
||||
inner_dim = dim
|
||||
|
||||
self.is_res = inner_dim == dim
|
||||
self.attn_precision = attn_precision
|
||||
|
||||
if self.ff_in:
|
||||
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
if disable_temporal_crossattention:
|
||||
if switch_temporal_ca_to_sa:
|
||||
raise ValueError
|
||||
else:
|
||||
self.attn2 = None
|
||||
else:
|
||||
context_dim_attn2 = None
|
||||
if not switch_temporal_ca_to_sa:
|
||||
context_dim_attn2 = context_dim
|
||||
|
||||
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
||||
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.n_heads = n_heads
|
||||
self.d_head = d_head
|
||||
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
extra_options = {}
|
||||
block = transformer_options.get("block", None)
|
||||
block_index = transformer_options.get("block_index", 0)
|
||||
transformer_patches = {}
|
||||
transformer_patches_replace = {}
|
||||
|
||||
for k in transformer_options:
|
||||
if k == "patches":
|
||||
transformer_patches = transformer_options[k]
|
||||
elif k == "patches_replace":
|
||||
transformer_patches_replace = transformer_options[k]
|
||||
else:
|
||||
extra_options[k] = transformer_options[k]
|
||||
|
||||
extra_options["n_heads"] = self.n_heads
|
||||
extra_options["dim_head"] = self.d_head
|
||||
extra_options["attn_precision"] = self.attn_precision
|
||||
|
||||
if self.ff_in:
|
||||
x_skip = x
|
||||
x = self.ff_in(self.norm_in(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
n = self.norm1(x)
|
||||
if self.disable_self_attn:
|
||||
context_attn1 = context
|
||||
else:
|
||||
context_attn1 = None
|
||||
value_attn1 = None
|
||||
|
||||
if "attn1_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn1_patch"]
|
||||
if context_attn1 is None:
|
||||
context_attn1 = n
|
||||
value_attn1 = context_attn1
|
||||
for p in patch:
|
||||
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
|
||||
|
||||
if block is not None:
|
||||
transformer_block = (block[0], block[1], block_index)
|
||||
else:
|
||||
transformer_block = None
|
||||
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
|
||||
block_attn1 = transformer_block
|
||||
if block_attn1 not in attn1_replace_patch:
|
||||
block_attn1 = block
|
||||
|
||||
if block_attn1 in attn1_replace_patch:
|
||||
if context_attn1 is None:
|
||||
context_attn1 = n
|
||||
value_attn1 = n
|
||||
n = self.attn1.to_q(n)
|
||||
context_attn1 = self.attn1.to_k(context_attn1)
|
||||
value_attn1 = self.attn1.to_v(value_attn1)
|
||||
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
|
||||
n = self.attn1.to_out(n)
|
||||
else:
|
||||
n = self.attn1(n, context=context_attn1, value=value_attn1)
|
||||
|
||||
if "attn1_output_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn1_output_patch"]
|
||||
for p in patch:
|
||||
n = p(n, extra_options)
|
||||
|
||||
x += n
|
||||
if "middle_patch" in transformer_patches:
|
||||
patch = transformer_patches["middle_patch"]
|
||||
for p in patch:
|
||||
x = p(x, extra_options)
|
||||
|
||||
if self.attn2 is not None:
|
||||
n = self.norm2(x)
|
||||
if self.switch_temporal_ca_to_sa:
|
||||
context_attn2 = n
|
||||
else:
|
||||
context_attn2 = context
|
||||
value_attn2 = None
|
||||
if "attn2_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_patch"]
|
||||
value_attn2 = context_attn2
|
||||
for p in patch:
|
||||
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
||||
|
||||
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
||||
block_attn2 = transformer_block
|
||||
if block_attn2 not in attn2_replace_patch:
|
||||
block_attn2 = block
|
||||
|
||||
if block_attn2 in attn2_replace_patch:
|
||||
if value_attn2 is None:
|
||||
value_attn2 = context_attn2
|
||||
n = self.attn2.to_q(n)
|
||||
context_attn2 = self.attn2.to_k(context_attn2)
|
||||
value_attn2 = self.attn2.to_v(value_attn2)
|
||||
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
||||
n = self.attn2.to_out(n)
|
||||
else:
|
||||
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
||||
|
||||
if "attn2_output_patch" in transformer_patches:
|
||||
patch = transformer_patches["attn2_output_patch"]
|
||||
for p in patch:
|
||||
n = p(n, extra_options)
|
||||
|
||||
x += n
|
||||
if self.is_res:
|
||||
x_skip = x
|
||||
x = self.ff(self.norm3(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data.
|
||||
First, project the input (aka embedding)
|
||||
and reshape to b, t, d.
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
NEW: use_linear for more efficiency instead of the 1x1 convs
|
||||
"""
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None,
|
||||
disable_self_attn=False, use_linear=False,
|
||||
use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim] * depth
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
if not use_linear:
|
||||
self.proj_in = operations.Conv2d(in_channels,
|
||||
inner_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
|
||||
for d in range(depth)]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = operations.Conv2d(inner_dim,in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
if not isinstance(context, list):
|
||||
context = [context] * len(self.transformer_blocks)
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = x.movedim(1, 3).flatten(1, 2).contiguous()
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
x = block(x, context=context[i], transformer_options=transformer_options)
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous()
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
|
||||
|
||||
class SpatialVideoTransformer(SpatialTransformer):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
use_linear=False,
|
||||
context_dim=None,
|
||||
use_spatial_context=False,
|
||||
timesteps=None,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
time_context_dim=None,
|
||||
ff_in=False,
|
||||
checkpoint=False,
|
||||
time_depth=1,
|
||||
disable_self_attn=False,
|
||||
disable_temporal_crossattention=False,
|
||||
max_time_embed_period: int = 10000,
|
||||
attn_precision=None,
|
||||
dtype=None, device=None, operations=ops
|
||||
):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=depth,
|
||||
dropout=dropout,
|
||||
use_checkpoint=checkpoint,
|
||||
context_dim=context_dim,
|
||||
use_linear=use_linear,
|
||||
disable_self_attn=disable_self_attn,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.time_depth = time_depth
|
||||
self.depth = depth
|
||||
self.max_time_embed_period = max_time_embed_period
|
||||
|
||||
time_mix_d_head = d_head
|
||||
n_time_mix_heads = n_heads
|
||||
|
||||
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
||||
|
||||
inner_dim = n_heads * d_head
|
||||
if use_spatial_context:
|
||||
time_context_dim = context_dim
|
||||
|
||||
self.time_stack = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
n_time_mix_heads,
|
||||
time_mix_d_head,
|
||||
dropout=dropout,
|
||||
context_dim=time_context_dim,
|
||||
# timesteps=timesteps,
|
||||
checkpoint=checkpoint,
|
||||
ff_in=ff_in,
|
||||
inner_dim=time_mix_inner_dim,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
attn_precision=attn_precision,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
assert len(self.time_stack) == len(self.transformer_blocks)
|
||||
|
||||
self.use_spatial_context = use_spatial_context
|
||||
self.in_channels = in_channels
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.time_pos_embed = nn.Sequential(
|
||||
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
time_context: Optional[torch.Tensor] = None,
|
||||
timesteps: Optional[int] = None,
|
||||
image_only_indicator: Optional[torch.Tensor] = None,
|
||||
transformer_options={}
|
||||
) -> torch.Tensor:
|
||||
_, _, h, w = x.shape
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
spatial_context = context
|
||||
|
||||
if self.use_spatial_context:
|
||||
assert (
|
||||
context.ndim == 3
|
||||
), f"n dims of spatial context should be 3 but are {context.ndim}"
|
||||
|
||||
if time_context is None:
|
||||
time_context = context
|
||||
time_context_first_timestep = time_context[::timesteps]
|
||||
time_context = repeat(
|
||||
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
||||
)
|
||||
elif time_context is not None and not self.use_spatial_context:
|
||||
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
|
||||
if time_context.ndim == 2:
|
||||
time_context = rearrange(time_context, "b c -> b 1 c")
|
||||
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
|
||||
num_frames = torch.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
|
||||
emb = self.time_pos_embed(t_emb)
|
||||
emb = emb[:, None, :]
|
||||
|
||||
for it_, (block, mix_block) in enumerate(
|
||||
zip(self.transformer_blocks, self.time_stack)
|
||||
):
|
||||
transformer_options["block_index"] = it_
|
||||
x = block(
|
||||
x,
|
||||
context=spatial_context,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
x_mix = x
|
||||
x_mix = x_mix + emb
|
||||
|
||||
B, S, C = x_mix.shape
|
||||
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
|
||||
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
|
||||
x_mix = rearrange(
|
||||
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
||||
)
|
||||
|
||||
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
|
||||
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
out = x + x_in
|
||||
return out
|
||||
|
||||
|
||||
0
comfy/ldm/modules/diffusionmodules/__init__.py
Normal file
0
comfy/ldm/modules/diffusionmodules/__init__.py
Normal file
1042
comfy/ldm/modules/diffusionmodules/mmdit.py
Normal file
1042
comfy/ldm/modules/diffusionmodules/mmdit.py
Normal file
File diff suppressed because it is too large
Load Diff
650
comfy/ldm/modules/diffusionmodules/model.py
Normal file
650
comfy/ldm/modules/diffusionmodules/model.py
Normal file
@@ -0,0 +1,650 @@
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from typing import Optional, Any
|
||||
import logging
|
||||
|
||||
from comfy import model_management
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
if model_management.xformers_enabled_vae():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x*torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
try:
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
except: #operation not implemented for bf16
|
||||
b, c, h, w = x.shape
|
||||
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
|
||||
split = 8
|
||||
l = out.shape[1] // split
|
||||
for i in range(0, out.shape[1], l):
|
||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
|
||||
del x
|
||||
x = out
|
||||
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0,1,0,1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||
dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = ops.Linear(temb_channels,
|
||||
out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
||||
self.conv2 = ops.Conv2d(out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
else:
|
||||
self.nin_shortcut = ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = self.swish(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = self.swish(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x+h
|
||||
|
||||
def slice_attention(q, k, v):
|
||||
r1 = torch.zeros_like(k, device=q.device)
|
||||
scale = (int(q.shape[-1])**(-0.5))
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
s1 = torch.bmm(q[:, i:end], k) * scale
|
||||
|
||||
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
|
||||
del s1
|
||||
|
||||
r1[:, :, i:end] = torch.bmm(v, s2)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
model_management.soft_empty_cache(True)
|
||||
steps *= 2
|
||||
if steps > 128:
|
||||
raise e
|
||||
logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
|
||||
|
||||
return r1
|
||||
|
||||
def normal_attention(q, k, v):
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
|
||||
q = q.reshape(b,c,h*w)
|
||||
q = q.permute(0,2,1) # b,hw,c
|
||||
k = k.reshape(b,c,h*w) # b,c,hw
|
||||
v = v.reshape(b,c,h*w)
|
||||
|
||||
r1 = slice_attention(q, k, v)
|
||||
h_ = r1.reshape(b,c,h,w)
|
||||
del r1
|
||||
return h_
|
||||
|
||||
def xformers_attention(q, k, v):
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
try:
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||
out = out.transpose(1, 2).reshape(B, C, H, W)
|
||||
except NotImplementedError as e:
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
||||
return out
|
||||
|
||||
def pytorch_attention(q, k, v):
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
try:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(B, C, H, W)
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
||||
return out
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
if model_management.xformers_enabled_vae():
|
||||
logging.info("Using xformers attention in VAE")
|
||||
self.optimized_attention = xformers_attention
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
logging.info("Using pytorch attention in VAE")
|
||||
self.optimized_attention = pytorch_attention
|
||||
else:
|
||||
logging.info("Using split attention in VAE")
|
||||
self.optimized_attention = normal_attention
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
h_ = self.optimized_attention(q, k, v)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
return AttnBlock(in_channels)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch*4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList([
|
||||
ops.Linear(self.ch,
|
||||
self.temb_ch),
|
||||
ops.Linear(self.temb_ch,
|
||||
self.temb_ch),
|
||||
])
|
||||
|
||||
# downsampling
|
||||
self.conv_in = ops.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch*in_ch_mult[i_level]
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions-1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch*ch_mult[i_level]
|
||||
skip_in = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch*in_ch_mult[i_level]
|
||||
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = ops.Conv2d(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x, t=None, context=None):
|
||||
#assert x.shape[2] == x.shape[3] == self.resolution
|
||||
if context is not None:
|
||||
# assume aligned context, cat along channel axis
|
||||
x = torch.cat((x, context), dim=1)
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions-1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h = self.up[i_level].block[i_block](
|
||||
torch.cat([h, hs.pop()], dim=1), temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.conv_out.weight
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
||||
**ignore_kwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = ops.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch*in_ch_mult[i_level]
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions-1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = ops.Conv2d(block_in,
|
||||
2*z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
# timestep embedding
|
||||
temb = None
|
||||
# downsampling
|
||||
h = self.conv_in(x)
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](h, temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
if i_level != self.num_resolutions-1:
|
||||
h = self.down[i_level].downsample(h)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
||||
conv_out_op=ops.Conv2d,
|
||||
resnet_op=ResnetBlock,
|
||||
attn_op=AttnBlock,
|
||||
**ignorekwargs):
|
||||
super().__init__()
|
||||
if use_linear_attn: attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.tanh_out = tanh_out
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,)+tuple(ch_mult)
|
||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||
logging.debug("Working with z of shape {} = {} dimensions.".format(
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = ops.Conv2d(z_channels,
|
||||
block_in,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = resnet_op(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
self.mid.attn_1 = attn_op(block_in)
|
||||
self.mid.block_2 = resnet_op(in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch*ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
block.append(resnet_op(in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(attn_op(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = conv_out_op(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
def forward(self, z, **kwargs):
|
||||
#assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb, **kwargs)
|
||||
h = self.mid.attn_1(h, **kwargs)
|
||||
h = self.mid.block_2(h, temb, **kwargs)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks+1):
|
||||
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h, **kwargs)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h, **kwargs)
|
||||
if self.tanh_out:
|
||||
h = torch.tanh(h)
|
||||
return h
|
||||
897
comfy/ldm/modules/diffusionmodules/openaimodel.py
Normal file
897
comfy/ldm/modules/diffusionmodules/openaimodel.py
Normal file
@@ -0,0 +1,897 @@
|
||||
from abc import abstractmethod
|
||||
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
import logging
|
||||
|
||||
from .util import (
|
||||
checkpoint,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
AlphaBlender,
|
||||
)
|
||||
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
||||
from comfy.ldm.util import exists
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
||||
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
||||
for layer in ts:
|
||||
if isinstance(layer, VideoResBlock):
|
||||
x = layer(x, emb, num_video_frames, image_only_indicator)
|
||||
elif isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialVideoTransformer):
|
||||
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
|
||||
if "transformer_index" in transformer_options:
|
||||
transformer_options["transformer_index"] += 1
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context, transformer_options)
|
||||
if "transformer_index" in transformer_options:
|
||||
transformer_options["transformer_index"] += 1
|
||||
elif isinstance(layer, Upsample):
|
||||
x = layer(x, output_shape=output_shape)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return forward_timestep_embed(self, *args, **kwargs)
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, output_shape=None):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
|
||||
if output_shape is not None:
|
||||
shape[1] = output_shape[3]
|
||||
shape[2] = output_shape[4]
|
||||
else:
|
||||
shape = [x.shape[2] * 2, x.shape[3] * 2]
|
||||
if output_shape is not None:
|
||||
shape[0] = output_shape[2]
|
||||
shape[1] = output_shape[3]
|
||||
|
||||
x = F.interpolate(x, size=shape, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = operations.conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
:param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout.
|
||||
:param out_channels: if specified, the number of out channels.
|
||||
:param use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the
|
||||
channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
||||
:param up: if True, use this block for upsampling.
|
||||
:param down: if True, use this block for downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
exchange_temb_dims=False,
|
||||
skip_t_emb=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
self.exchange_temb_dims = exchange_temb_dims
|
||||
|
||||
if isinstance(kernel_size, list):
|
||||
padding = [k // 2 for k in kernel_size]
|
||||
else:
|
||||
padding = kernel_size // 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
operations.GroupNorm(32, channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
||||
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
||||
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.skip_t_emb = skip_t_emb
|
||||
if self.skip_t_emb:
|
||||
self.emb_layers = None
|
||||
self.exchange_temb_dims = False
|
||||
else:
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
|
||||
,
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = operations.conv_nd(
|
||||
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
|
||||
emb_out = None
|
||||
if not self.skip_t_emb:
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
h = out_norm(h)
|
||||
if emb_out is not None:
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h *= (1 + scale)
|
||||
h += shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
if emb_out is not None:
|
||||
if self.exchange_temb_dims:
|
||||
emb_out = emb_out.movedim(1, 2)
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class VideoResBlock(ResBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
video_kernel_size=3,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
out_channels=None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
super().__init__(
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=out_channels,
|
||||
use_conv=use_conv,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
up=up,
|
||||
down=down,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
self.time_stack = ResBlock(
|
||||
default(out_channels, channels),
|
||||
emb_channels,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
out_channels=default(out_channels, channels),
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=video_kernel_size,
|
||||
use_checkpoint=use_checkpoint,
|
||||
exchange_temb_dims=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
rearrange_pattern="b t -> b 1 t 1 1",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator = None,
|
||||
) -> th.Tensor:
|
||||
x = super().forward(x, emb)
|
||||
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
|
||||
x = self.time_stack(
|
||||
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
||||
)
|
||||
x = self.time_mixer(
|
||||
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
||||
)
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class Timestep(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, t):
|
||||
return timestep_embedding(t, self.dim)
|
||||
|
||||
def apply_control(h, control, name):
|
||||
if control is not None and name in control and len(control[name]) > 0:
|
||||
ctrl = control[name].pop()
|
||||
if ctrl is not None:
|
||||
try:
|
||||
h += ctrl
|
||||
except:
|
||||
logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
|
||||
return h
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_classes: if specified (as an int), then this model will be
|
||||
class-conditional with `num_classes` classes.
|
||||
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
dtype=th.float32,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
use_temporal_resblock=False,
|
||||
use_temporal_attention=False,
|
||||
time_context_dim=None,
|
||||
extra_ff_mix_layer=False,
|
||||
use_spatial_context=False,
|
||||
merge_strategy=None,
|
||||
merge_factor=0.0,
|
||||
video_kernel_size=None,
|
||||
disable_temporal_crossattention=False,
|
||||
max_ddpm_temb_period=10000,
|
||||
attn_precision=None,
|
||||
device=None,
|
||||
operations=ops,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
|
||||
transformer_depth = transformer_depth[:]
|
||||
transformer_depth_output = transformer_depth_output[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = dtype
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.use_temporal_resblocks = use_temporal_resblock
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
self.default_num_video_frames = None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
|
||||
elif self.num_classes == "continuous":
|
||||
logging.debug("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
def get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disable_self_attn=False,
|
||||
):
|
||||
if use_temporal_attention:
|
||||
return SpatialVideoTransformer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=depth,
|
||||
context_dim=context_dim,
|
||||
time_context_dim=time_context_dim,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
merge_strategy=merge_strategy,
|
||||
merge_factor=merge_factor,
|
||||
checkpoint=use_checkpoint,
|
||||
use_linear=use_linear_in_transformer,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
max_time_embed_period=max_ddpm_temb_period,
|
||||
attn_precision=attn_precision,
|
||||
dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
else:
|
||||
return SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def get_resblock(
|
||||
merge_factor,
|
||||
merge_strategy,
|
||||
video_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=ops
|
||||
):
|
||||
if self.use_temporal_resblocks:
|
||||
return VideoResBlock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
else:
|
||||
return ResBlock(
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_channels,
|
||||
use_checkpoint=use_checkpoint,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(get_attention_layer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
mid_block = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
|
||||
self.middle_block = None
|
||||
if transformer_depth_middle >= -1:
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [get_attention_layer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
||||
),
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=None,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(self.num_res_blocks[level] + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch + ich,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
get_attention_layer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
get_resblock(
|
||||
merge_factor=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
video_kernel_size=video_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param context: conditioning plugged in via crossattn
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
transformer_options["original_shape"] = list(x.shape)
|
||||
transformer_options["transformer_index"] = 0
|
||||
transformer_patches = transformer_options.get("patches", {})
|
||||
|
||||
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
|
||||
image_only_indicator = kwargs.get("image_only_indicator", None)
|
||||
time_context = kwargs.get("time_context", None)
|
||||
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if "emb_patch" in transformer_patches:
|
||||
patch = transformer_patches["emb_patch"]
|
||||
for p in patch:
|
||||
emb = p(emb, self.model_channels, transformer_options)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x
|
||||
for id, module in enumerate(self.input_blocks):
|
||||
transformer_options["block"] = ("input", id)
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = apply_control(h, control, 'input')
|
||||
if "input_block_patch" in transformer_patches:
|
||||
patch = transformer_patches["input_block_patch"]
|
||||
for p in patch:
|
||||
h = p(h, transformer_options)
|
||||
|
||||
hs.append(h)
|
||||
if "input_block_patch_after_skip" in transformer_patches:
|
||||
patch = transformer_patches["input_block_patch_after_skip"]
|
||||
for p in patch:
|
||||
h = p(h, transformer_options)
|
||||
|
||||
transformer_options["block"] = ("middle", 0)
|
||||
if self.middle_block is not None:
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = apply_control(h, control, 'middle')
|
||||
|
||||
|
||||
for id, module in enumerate(self.output_blocks):
|
||||
transformer_options["block"] = ("output", id)
|
||||
hsp = hs.pop()
|
||||
hsp = apply_control(hsp, control, 'output')
|
||||
|
||||
if "output_block_patch" in transformer_patches:
|
||||
patch = transformer_patches["output_block_patch"]
|
||||
for p in patch:
|
||||
h, hsp = p(h, hsp, transformer_options)
|
||||
|
||||
h = th.cat([h, hsp], dim=1)
|
||||
del hsp
|
||||
if len(hs) > 0:
|
||||
output_shape = hs[-1].shape
|
||||
else:
|
||||
output_shape = None
|
||||
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
||||
h = h.type(x.dtype)
|
||||
if self.predict_codebook_ids:
|
||||
return self.id_predictor(h)
|
||||
else:
|
||||
return self.out(h)
|
||||
85
comfy/ldm/modules/diffusionmodules/upscaling.py
Normal file
85
comfy/ldm/modules/diffusionmodules/upscaling.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from .util import extract_into_tensor, make_beta_schedule
|
||||
from comfy.ldm.util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
||||
# for concatenating a downsampled image to the latent representation
|
||||
def __init__(self, noise_schedule_config=None):
|
||||
super(AbstractLowScaleModel, self).__init__()
|
||||
if noise_schedule_config is not None:
|
||||
self.register_schedule(**noise_schedule_config)
|
||||
|
||||
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
||||
cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
||||
|
||||
to_torch = partial(torch.tensor, dtype=torch.float32)
|
||||
|
||||
self.register_buffer('betas', to_torch(betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
||||
|
||||
def q_sample(self, x_start, t, noise=None, seed=None):
|
||||
if noise is None:
|
||||
if seed is None:
|
||||
noise = torch.randn_like(x_start)
|
||||
else:
|
||||
noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
|
||||
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
|
||||
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
|
||||
|
||||
def forward(self, x):
|
||||
return x, None
|
||||
|
||||
def decode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class SimpleImageConcat(AbstractLowScaleModel):
|
||||
# no noise level conditioning
|
||||
def __init__(self):
|
||||
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
||||
self.max_noise_level = 0
|
||||
|
||||
def forward(self, x):
|
||||
# fix to constant noise level
|
||||
return x, torch.zeros(x.shape[0], device=x.device).long()
|
||||
|
||||
|
||||
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
||||
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
||||
super().__init__(noise_schedule_config=noise_schedule_config)
|
||||
self.max_noise_level = max_noise_level
|
||||
|
||||
def forward(self, x, noise_level=None, seed=None):
|
||||
if noise_level is None:
|
||||
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
||||
else:
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
z = self.q_sample(x, noise_level, seed=seed)
|
||||
return z, noise_level
|
||||
|
||||
|
||||
|
||||
306
comfy/ldm/modules/diffusionmodules/util.py
Normal file
306
comfy/ldm/modules/diffusionmodules/util.py
Normal file
@@ -0,0 +1,306 @@
|
||||
# adopted from
|
||||
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||||
# and
|
||||
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||||
# and
|
||||
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||||
#
|
||||
# thanks!
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat, rearrange
|
||||
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
|
||||
class AlphaBlender(nn.Module):
|
||||
strategies = ["learned", "fixed", "learned_with_images"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
alpha: float,
|
||||
merge_strategy: str = "learned_with_images",
|
||||
rearrange_pattern: str = "b t -> (b t) 1 1",
|
||||
):
|
||||
super().__init__()
|
||||
self.merge_strategy = merge_strategy
|
||||
self.rearrange_pattern = rearrange_pattern
|
||||
|
||||
assert (
|
||||
merge_strategy in self.strategies
|
||||
), f"merge_strategy needs to be in {self.strategies}"
|
||||
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif (
|
||||
self.merge_strategy == "learned"
|
||||
or self.merge_strategy == "learned_with_images"
|
||||
):
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor:
|
||||
# skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
|
||||
if self.merge_strategy == "fixed":
|
||||
# make shape compatible
|
||||
# alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
|
||||
alpha = self.mix_factor.to(device)
|
||||
elif self.merge_strategy == "learned":
|
||||
alpha = torch.sigmoid(self.mix_factor.to(device))
|
||||
# make shape compatible
|
||||
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
||||
elif self.merge_strategy == "learned_with_images":
|
||||
if image_only_indicator is None:
|
||||
alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1")
|
||||
else:
|
||||
alpha = torch.where(
|
||||
image_only_indicator.bool(),
|
||||
torch.ones(1, 1, device=image_only_indicator.device),
|
||||
rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
|
||||
)
|
||||
alpha = rearrange(alpha, self.rearrange_pattern)
|
||||
# make shape compatible
|
||||
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
return alpha
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x_spatial,
|
||||
x_temporal,
|
||||
image_only_indicator=None,
|
||||
) -> torch.Tensor:
|
||||
alpha = self.get_alpha(image_only_indicator, x_spatial.device)
|
||||
x = (
|
||||
alpha.to(x_spatial.dtype) * x_spatial
|
||||
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal
|
||||
)
|
||||
return x
|
||||
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
alphas = alphas / alphas[0]
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = torch.clamp(betas, min=0, max=0.999)
|
||||
|
||||
elif schedule == "squaredcos_cap_v2": # used for karlo prior
|
||||
# return early
|
||||
return betas_for_alpha_bar(
|
||||
n_timestep,
|
||||
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
||||
)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||
:param num_diffusion_timesteps: the number of betas to produce.
|
||||
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||
produces the cumulative product of (1-beta) up to that
|
||||
part of the diffusion process.
|
||||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
"""
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return np.array(betas)
|
||||
|
||||
|
||||
def extract_into_tensor(a, t, x_shape):
|
||||
b, *_ = t.shape
|
||||
out = a.gather(-1, t)
|
||||
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if flag:
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
||||
"dtype": torch.get_autocast_gpu_dtype(),
|
||||
"cache_enabled": torch.is_autocast_cache_enabled()}
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
||||
)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
else:
|
||||
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||
return embedding
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
||||
0
comfy/ldm/modules/distributions/__init__.py
Normal file
0
comfy/ldm/modules/distributions/__init__.py
Normal file
92
comfy/ldm/modules/distributions/distributions.py
Normal file
92
comfy/ldm/modules/distributions/distributions.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
||||
80
comfy/ldm/modules/ema.py
Normal file
80
comfy/ldm/modules/ema.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LitEma(nn.Module):
|
||||
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
||||
super().__init__()
|
||||
if decay < 0.0 or decay > 1.0:
|
||||
raise ValueError('Decay must be between 0 and 1')
|
||||
|
||||
self.m_name2s_name = {}
|
||||
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
||||
else torch.tensor(-1, dtype=torch.int))
|
||||
|
||||
for name, p in model.named_parameters():
|
||||
if p.requires_grad:
|
||||
# remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace('.', '')
|
||||
self.m_name2s_name.update({name: s_name})
|
||||
self.register_buffer(s_name, p.clone().detach().data)
|
||||
|
||||
self.collected_params = []
|
||||
|
||||
def reset_num_updates(self):
|
||||
del self.num_updates
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
||||
|
||||
def forward(self, model):
|
||||
decay = self.decay
|
||||
|
||||
if self.num_updates >= 0:
|
||||
self.num_updates += 1
|
||||
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
||||
|
||||
one_minus_decay = 1.0 - decay
|
||||
|
||||
with torch.no_grad():
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
sname = self.m_name2s_name[key]
|
||||
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def copy_to(self, model):
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def store(self, parameters):
|
||||
"""
|
||||
Save the current parameters for restoring later.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
temporarily stored.
|
||||
"""
|
||||
self.collected_params = [param.clone() for param in parameters]
|
||||
|
||||
def restore(self, parameters):
|
||||
"""
|
||||
Restore the parameters stored with the `store` method.
|
||||
Useful to validate the model with EMA parameters without affecting the
|
||||
original optimization process. Store the parameters before the
|
||||
`copy_to` method. After validation (or model saving), use this to
|
||||
restore the former parameters.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
updated with the stored parameters.
|
||||
"""
|
||||
for c_param, param in zip(self.collected_params, parameters):
|
||||
param.data.copy_(c_param.data)
|
||||
0
comfy/ldm/modules/encoders/__init__.py
Normal file
0
comfy/ldm/modules/encoders/__init__.py
Normal file
35
comfy/ldm/modules/encoders/noise_aug_modules.py
Normal file
35
comfy/ldm/modules/encoders/noise_aug_modules.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
from ..diffusionmodules.openaimodel import Timestep
|
||||
import torch
|
||||
|
||||
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
|
||||
def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if clip_stats_path is None:
|
||||
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
|
||||
else:
|
||||
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
|
||||
self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
|
||||
self.register_buffer("data_std", clip_std[None, :], persistent=False)
|
||||
self.time_embed = Timestep(timestep_dim)
|
||||
|
||||
def scale(self, x):
|
||||
# re-normalize to centered mean and unit variance
|
||||
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
|
||||
return x
|
||||
|
||||
def unscale(self, x):
|
||||
# back to original data stats
|
||||
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
|
||||
return x
|
||||
|
||||
def forward(self, x, noise_level=None, seed=None):
|
||||
if noise_level is None:
|
||||
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
||||
else:
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
x = self.scale(x)
|
||||
z = self.q_sample(x, noise_level, seed=seed)
|
||||
z = self.unscale(z)
|
||||
noise_level = self.time_embed(noise_level)
|
||||
return z, noise_level
|
||||
274
comfy/ldm/modules/sub_quadratic_attention.py
Normal file
274
comfy/ldm/modules/sub_quadratic_attention.py
Normal file
@@ -0,0 +1,274 @@
|
||||
# original source:
|
||||
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
|
||||
# license:
|
||||
# MIT
|
||||
# credit:
|
||||
# Amin Rezaei (original author)
|
||||
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
|
||||
# implementation of:
|
||||
# Self-attention Does Not Need O(n2) Memory":
|
||||
# https://arxiv.org/abs/2112.05682v2
|
||||
|
||||
from functools import partial
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
import math
|
||||
import logging
|
||||
|
||||
try:
|
||||
from typing import Optional, NamedTuple, List, Protocol
|
||||
except ImportError:
|
||||
from typing import Optional, NamedTuple, List
|
||||
from typing_extensions import Protocol
|
||||
|
||||
from torch import Tensor
|
||||
from typing import List
|
||||
|
||||
from comfy import model_management
|
||||
|
||||
def dynamic_slice(
|
||||
x: Tensor,
|
||||
starts: List[int],
|
||||
sizes: List[int],
|
||||
) -> Tensor:
|
||||
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
||||
return x[slicing]
|
||||
|
||||
class AttnChunk(NamedTuple):
|
||||
exp_values: Tensor
|
||||
exp_weights_sum: Tensor
|
||||
max_score: Tensor
|
||||
|
||||
class SummarizeChunk(Protocol):
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
) -> AttnChunk: ...
|
||||
|
||||
class ComputeQueryChunkAttn(Protocol):
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
) -> Tensor: ...
|
||||
|
||||
def _summarize_chunk(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
) -> AttnChunk:
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_weights = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
else:
|
||||
attn_weights = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
||||
max_score = max_score.detach()
|
||||
attn_weights -= max_score
|
||||
if mask is not None:
|
||||
attn_weights += mask
|
||||
torch.exp(attn_weights, out=attn_weights)
|
||||
exp_weights = attn_weights.to(value.dtype)
|
||||
exp_values = torch.bmm(exp_weights, value)
|
||||
max_score = max_score.squeeze(-1)
|
||||
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
||||
|
||||
def _query_chunk_attention(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
summarize_chunk: SummarizeChunk,
|
||||
kv_chunk_size: int,
|
||||
mask,
|
||||
) -> Tensor:
|
||||
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
|
||||
_, _, v_channels_per_head = value.shape
|
||||
|
||||
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
|
||||
key_chunk = dynamic_slice(
|
||||
key_t,
|
||||
(0, 0, chunk_idx),
|
||||
(batch_x_heads, k_channels_per_head, kv_chunk_size)
|
||||
)
|
||||
value_chunk = dynamic_slice(
|
||||
value,
|
||||
(0, chunk_idx, 0),
|
||||
(batch_x_heads, kv_chunk_size, v_channels_per_head)
|
||||
)
|
||||
if mask is not None:
|
||||
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
|
||||
|
||||
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
|
||||
|
||||
chunks: List[AttnChunk] = [
|
||||
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
|
||||
]
|
||||
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
|
||||
chunk_values, chunk_weights, chunk_max = acc_chunk
|
||||
|
||||
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
|
||||
max_diffs = torch.exp(chunk_max - global_max)
|
||||
chunk_values *= torch.unsqueeze(max_diffs, -1)
|
||||
chunk_weights *= max_diffs
|
||||
|
||||
all_values = chunk_values.sum(dim=0)
|
||||
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
||||
return all_values / all_weights
|
||||
|
||||
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
||||
def _get_attention_scores_no_kv_chunking(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
) -> Tensor:
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_scores = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
else:
|
||||
attn_scores = torch.baddbmm(
|
||||
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
||||
query,
|
||||
key_t,
|
||||
alpha=scale,
|
||||
beta=0,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
attn_scores += mask
|
||||
try:
|
||||
attn_probs = attn_scores.softmax(dim=-1)
|
||||
del attn_scores
|
||||
except model_management.OOM_EXCEPTION:
|
||||
logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
|
||||
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
|
||||
torch.exp(attn_scores, out=attn_scores)
|
||||
summed = torch.sum(attn_scores, dim=-1, keepdim=True)
|
||||
attn_scores /= summed
|
||||
attn_probs = attn_scores
|
||||
|
||||
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
|
||||
return hidden_states_slice
|
||||
|
||||
class ScannedChunk(NamedTuple):
|
||||
chunk_idx: int
|
||||
attn_chunk: AttnChunk
|
||||
|
||||
def efficient_dot_product_attention(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
query_chunk_size=1024,
|
||||
kv_chunk_size: Optional[int] = None,
|
||||
kv_chunk_size_min: Optional[int] = None,
|
||||
use_checkpoint=True,
|
||||
upcast_attention=False,
|
||||
mask = None,
|
||||
):
|
||||
"""Computes efficient dot-product attention given query, transposed key, and value.
|
||||
This is efficient version of attention presented in
|
||||
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
|
||||
Args:
|
||||
query: queries for calculating attention with shape of
|
||||
`[batch * num_heads, tokens, channels_per_head]`.
|
||||
key_t: keys for calculating attention with shape of
|
||||
`[batch * num_heads, channels_per_head, tokens]`.
|
||||
value: values to be used in attention with shape of
|
||||
`[batch * num_heads, tokens, channels_per_head]`.
|
||||
query_chunk_size: int: query chunks size
|
||||
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
|
||||
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
|
||||
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
|
||||
Returns:
|
||||
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
|
||||
"""
|
||||
batch_x_heads, q_tokens, q_channels_per_head = query.shape
|
||||
_, _, k_tokens = key_t.shape
|
||||
scale = q_channels_per_head ** -0.5
|
||||
|
||||
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
|
||||
if kv_chunk_size_min is not None:
|
||||
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
|
||||
|
||||
if mask is not None and len(mask.shape) == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
|
||||
def get_query_chunk(chunk_idx: int) -> Tensor:
|
||||
return dynamic_slice(
|
||||
query,
|
||||
(0, chunk_idx, 0),
|
||||
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
|
||||
)
|
||||
|
||||
def get_mask_chunk(chunk_idx: int) -> Tensor:
|
||||
if mask is None:
|
||||
return None
|
||||
chunk = min(query_chunk_size, q_tokens)
|
||||
return mask[:,chunk_idx:chunk_idx + chunk]
|
||||
|
||||
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
|
||||
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
||||
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
|
||||
_get_attention_scores_no_kv_chunking,
|
||||
scale=scale,
|
||||
upcast_attention=upcast_attention
|
||||
) if k_tokens <= kv_chunk_size else (
|
||||
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
|
||||
partial(
|
||||
_query_chunk_attention,
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
summarize_chunk=summarize_chunk,
|
||||
)
|
||||
)
|
||||
|
||||
if q_tokens <= query_chunk_size:
|
||||
# fast-path for when there's just 1 query chunk
|
||||
return compute_query_chunk_attn(
|
||||
query=query,
|
||||
key_t=key_t,
|
||||
value=value,
|
||||
mask=mask,
|
||||
)
|
||||
|
||||
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
|
||||
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
|
||||
res = torch.cat([
|
||||
compute_query_chunk_attn(
|
||||
query=get_query_chunk(i * query_chunk_size),
|
||||
key_t=key_t,
|
||||
value=value,
|
||||
mask=get_mask_chunk(i * query_chunk_size)
|
||||
) for i in range(math.ceil(q_tokens / query_chunk_size))
|
||||
], dim=1)
|
||||
return res
|
||||
245
comfy/ldm/modules/temporal_ae.py
Normal file
245
comfy/ldm/modules/temporal_ae.py
Normal file
@@ -0,0 +1,245 @@
|
||||
import functools
|
||||
from typing import Callable, Iterable, Union
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
from .diffusionmodules.model import (
|
||||
AttnBlock,
|
||||
Decoder,
|
||||
ResnetBlock,
|
||||
)
|
||||
from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
|
||||
from .attention import BasicTransformerBlock
|
||||
|
||||
def partialclass(cls, *args, **kwargs):
|
||||
class NewCls(cls):
|
||||
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
||||
|
||||
return NewCls
|
||||
|
||||
|
||||
class VideoResBlock(ResnetBlock):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
*args,
|
||||
dropout=0.0,
|
||||
video_kernel_size=3,
|
||||
alpha=0.0,
|
||||
merge_strategy="learned",
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
|
||||
if video_kernel_size is None:
|
||||
video_kernel_size = [3, 1, 1]
|
||||
self.time_stack = ResBlock(
|
||||
channels=out_channels,
|
||||
emb_channels=0,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=video_kernel_size,
|
||||
use_checkpoint=False,
|
||||
skip_t_emb=True,
|
||||
)
|
||||
|
||||
self.merge_strategy = merge_strategy
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif self.merge_strategy == "learned":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def get_alpha(self, bs):
|
||||
if self.merge_strategy == "fixed":
|
||||
return self.mix_factor
|
||||
elif self.merge_strategy == "learned":
|
||||
return torch.sigmoid(self.mix_factor)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def forward(self, x, temb, skip_video=False, timesteps=None):
|
||||
b, c, h, w = x.shape
|
||||
if timesteps is None:
|
||||
timesteps = b
|
||||
|
||||
x = super().forward(x, temb)
|
||||
|
||||
if not skip_video:
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
|
||||
x = self.time_stack(x, temb)
|
||||
|
||||
alpha = self.get_alpha(bs=b // timesteps).to(x.device)
|
||||
x = alpha * x + (1.0 - alpha) * x_mix
|
||||
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class AE3DConv(ops.Conv2d):
|
||||
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
|
||||
super().__init__(in_channels, out_channels, *args, **kwargs)
|
||||
if isinstance(video_kernel_size, Iterable):
|
||||
padding = [int(k // 2) for k in video_kernel_size]
|
||||
else:
|
||||
padding = int(video_kernel_size // 2)
|
||||
|
||||
self.time_mix_conv = ops.Conv3d(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=video_kernel_size,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
def forward(self, input, timesteps=None, skip_video=False):
|
||||
if timesteps is None:
|
||||
timesteps = input.shape[0]
|
||||
x = super().forward(input)
|
||||
if skip_video:
|
||||
return x
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||||
x = self.time_mix_conv(x)
|
||||
return rearrange(x, "b c t h w -> (b t) c h w")
|
||||
|
||||
|
||||
class AttnVideoBlock(AttnBlock):
|
||||
def __init__(
|
||||
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
||||
):
|
||||
super().__init__(in_channels)
|
||||
# no context, single headed, as in base class
|
||||
self.time_mix_block = BasicTransformerBlock(
|
||||
dim=in_channels,
|
||||
n_heads=1,
|
||||
d_head=in_channels,
|
||||
checkpoint=False,
|
||||
ff_in=True,
|
||||
)
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.video_time_embed = torch.nn.Sequential(
|
||||
ops.Linear(self.in_channels, time_embed_dim),
|
||||
torch.nn.SiLU(),
|
||||
ops.Linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
|
||||
self.merge_strategy = merge_strategy
|
||||
if self.merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
||||
elif self.merge_strategy == "learned":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
def forward(self, x, timesteps=None, skip_time_block=False):
|
||||
if skip_time_block:
|
||||
return super().forward(x)
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = x.shape[0]
|
||||
|
||||
x_in = x
|
||||
x = self.attention(x)
|
||||
h, w = x.shape[2:]
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
|
||||
x_mix = x
|
||||
num_frames = torch.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
||||
emb = self.video_time_embed(t_emb) # b, n_channels
|
||||
emb = emb[:, None, :]
|
||||
x_mix = x_mix + emb
|
||||
|
||||
alpha = self.get_alpha().to(x.device)
|
||||
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
||||
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
|
||||
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
x = self.proj_out(x)
|
||||
|
||||
return x_in + x
|
||||
|
||||
def get_alpha(
|
||||
self,
|
||||
):
|
||||
if self.merge_strategy == "fixed":
|
||||
return self.mix_factor
|
||||
elif self.merge_strategy == "learned":
|
||||
return torch.sigmoid(self.mix_factor)
|
||||
else:
|
||||
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
||||
|
||||
|
||||
|
||||
def make_time_attn(
|
||||
in_channels,
|
||||
attn_type="vanilla",
|
||||
attn_kwargs=None,
|
||||
alpha: float = 0,
|
||||
merge_strategy: str = "learned",
|
||||
):
|
||||
return partialclass(
|
||||
AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
|
||||
class Conv2DWrapper(torch.nn.Conv2d):
|
||||
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
return super().forward(input)
|
||||
|
||||
|
||||
class VideoDecoder(Decoder):
|
||||
available_time_modes = ["all", "conv-only", "attn-only"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
video_kernel_size: Union[int, list] = 3,
|
||||
alpha: float = 0.0,
|
||||
merge_strategy: str = "learned",
|
||||
time_mode: str = "conv-only",
|
||||
**kwargs,
|
||||
):
|
||||
self.video_kernel_size = video_kernel_size
|
||||
self.alpha = alpha
|
||||
self.merge_strategy = merge_strategy
|
||||
self.time_mode = time_mode
|
||||
assert (
|
||||
self.time_mode in self.available_time_modes
|
||||
), f"time_mode parameter has to be in {self.available_time_modes}"
|
||||
|
||||
if self.time_mode != "attn-only":
|
||||
kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
|
||||
if self.time_mode not in ["conv-only", "only-last-conv"]:
|
||||
kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
||||
if self.time_mode not in ["attn-only", "only-last-conv"]:
|
||||
kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def get_last_layer(self, skip_time_mix=False, **kwargs):
|
||||
if self.time_mode == "attn-only":
|
||||
raise NotImplementedError("TODO")
|
||||
else:
|
||||
return (
|
||||
self.conv_out.time_mix_conv.weight
|
||||
if not skip_time_mix
|
||||
else self.conv_out.weight
|
||||
)
|
||||
197
comfy/ldm/util.py
Normal file
197
comfy/ldm/util.py
Normal file
@@ -0,0 +1,197 @@
|
||||
import importlib
|
||||
|
||||
import torch
|
||||
from torch import optim
|
||||
import numpy as np
|
||||
|
||||
from inspect import isfunction
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
||||
nc = int(40 * (wh[0] / 256))
|
||||
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
txts = np.stack(txts)
|
||||
txts = torch.tensor(txts)
|
||||
return txts
|
||||
|
||||
|
||||
def ismap(x):
|
||||
if not isinstance(x, torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
||||
|
||||
|
||||
def isimage(x):
|
||||
if not isinstance(x,torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
||||
|
||||
|
||||
def exists(x):
|
||||
return x is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config):
|
||||
if not "target" in config:
|
||||
if config == '__is_first_stage__':
|
||||
return None
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
return getattr(importlib.import_module(module, package=None), cls)
|
||||
|
||||
|
||||
class AdamWwithEMAandWings(optim.Optimizer):
|
||||
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
||||
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
||||
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
||||
ema_power=1., param_names=()):
|
||||
"""AdamW that saves EMA versions of the parameters."""
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0.0 <= weight_decay:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0.0 <= ema_decay <= 1.0:
|
||||
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
||||
ema_power=ema_power, param_names=param_names)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('amsgrad', False)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
Args:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad = []
|
||||
grads = []
|
||||
exp_avgs = []
|
||||
exp_avg_sqs = []
|
||||
ema_params_with_grad = []
|
||||
state_sums = []
|
||||
max_exp_avg_sqs = []
|
||||
state_steps = []
|
||||
amsgrad = group['amsgrad']
|
||||
beta1, beta2 = group['betas']
|
||||
ema_decay = group['ema_decay']
|
||||
ema_power = group['ema_power']
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
params_with_grad.append(p)
|
||||
if p.grad.is_sparse:
|
||||
raise RuntimeError('AdamW does not support sparse gradients')
|
||||
grads.append(p.grad)
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
if amsgrad:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of parameter values
|
||||
state['param_exp_avg'] = p.detach().float().clone()
|
||||
|
||||
exp_avgs.append(state['exp_avg'])
|
||||
exp_avg_sqs.append(state['exp_avg_sq'])
|
||||
ema_params_with_grad.append(state['param_exp_avg'])
|
||||
|
||||
if amsgrad:
|
||||
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
||||
|
||||
# update the steps for each param group update
|
||||
state['step'] += 1
|
||||
# record the step after step update
|
||||
state_steps.append(state['step'])
|
||||
|
||||
optim._functional.adamw(params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
max_exp_avg_sqs,
|
||||
state_steps,
|
||||
amsgrad=amsgrad,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=group['lr'],
|
||||
weight_decay=group['weight_decay'],
|
||||
eps=group['eps'],
|
||||
maximize=False)
|
||||
|
||||
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
||||
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
||||
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
||||
|
||||
return loss
|
||||
595
comfy/lora.py
Normal file
595
comfy/lora.py
Normal file
@@ -0,0 +1,595 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
import logging
|
||||
import torch
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
dora_scale_name = "{}.dora_scale".format(x)
|
||||
dora_scale = None
|
||||
if dora_scale_name in lora.keys():
|
||||
dora_scale = lora[dora_scale_name]
|
||||
loaded_keys.add(dora_scale_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale))
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
|
||||
|
||||
#glora
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
|
||||
w_norm_name = "{}.w_norm".format(x)
|
||||
b_norm_name = "{}.b_norm".format(x)
|
||||
w_norm = lora.get(w_norm_name, None)
|
||||
b_norm = lora.get(b_norm_name, None)
|
||||
|
||||
if w_norm is not None:
|
||||
loaded_keys.add(w_norm_name)
|
||||
patch_dict[to_load[x]] = ("diff", (w_norm,))
|
||||
if b_norm is not None:
|
||||
loaded_keys.add(b_norm_name)
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
|
||||
|
||||
diff_name = "{}.diff".format(x)
|
||||
diff_weight = lora.get(diff_name, None)
|
||||
if diff_weight is not None:
|
||||
patch_dict[to_load[x]] = ("diff", (diff_weight,))
|
||||
loaded_keys.add(diff_name)
|
||||
|
||||
diff_bias_name = "{}.diff_b".format(x)
|
||||
diff_bias = lora.get(diff_bias_name, None)
|
||||
if diff_bias is not None:
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
|
||||
loaded_keys.add(diff_bias_name)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
logging.warning("lora key not loaded: {}".format(x))
|
||||
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
for k in sdk:
|
||||
if k.endswith(".weight"):
|
||||
key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
clip_g_present = False
|
||||
for b in range(32): #TODO: clean up
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
clip_g_present = True
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map[lora_key] = k
|
||||
|
||||
for k in sdk:
|
||||
if k.endswith(".weight"):
|
||||
if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora
|
||||
l_key = k[len("t5xxl.transformer."):-len(".weight")]
|
||||
t5_index = 1
|
||||
if clip_g_present:
|
||||
t5_index += 1
|
||||
if clip_l_present:
|
||||
t5_index += 1
|
||||
if t5_index == 2:
|
||||
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux
|
||||
t5_index += 1
|
||||
|
||||
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k
|
||||
elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
|
||||
l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
|
||||
lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
|
||||
key_map[lora_key] = k
|
||||
|
||||
|
||||
k = "clip_g.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
key_map["lora_prior_te_text_projection"] = k #cascade lora?
|
||||
# key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
|
||||
key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora
|
||||
|
||||
k = "clip_l.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning
|
||||
|
||||
return key_map
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sd = model.state_dict()
|
||||
sdk = sd.keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
|
||||
if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
|
||||
diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
|
||||
key_map[key_lora] = to
|
||||
|
||||
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
|
||||
key_map[key_lora] = to
|
||||
|
||||
key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
|
||||
key_map[key_lora] = to
|
||||
|
||||
key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
|
||||
key_map[key_lora] = to
|
||||
|
||||
|
||||
if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
|
||||
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
|
||||
key_map[key_lora] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.HunyuanDiT):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format
|
||||
|
||||
if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
|
||||
diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
|
||||
Args:
|
||||
tensor (torch.Tensor): The original tensor to be padded.
|
||||
new_shape (List[int]): The desired shape of the padded tensor.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: A new tensor padded with zeros to the specified shape.
|
||||
|
||||
Note:
|
||||
If the new shape is smaller than the original tensor in any dimension,
|
||||
the original tensor will be truncated in that dimension.
|
||||
"""
|
||||
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
|
||||
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
|
||||
|
||||
if len(new_shape) != len(tensor.shape):
|
||||
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
|
||||
|
||||
# Create a new tensor filled with zeros
|
||||
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)
|
||||
|
||||
# Create slicing tuples for both tensors
|
||||
orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
new_slices = tuple(slice(0, dim) for dim in tensor.shape)
|
||||
|
||||
# Copy the original tensor into the new tensor
|
||||
padded_tensor[new_slices] = tensor[orig_slices]
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
v = p[1]
|
||||
strength_model = p[2]
|
||||
offset = p[3]
|
||||
function = p[4]
|
||||
if function is None:
|
||||
function = lambda a: a
|
||||
|
||||
old_weight = None
|
||||
if offset is not None:
|
||||
old_weight = weight
|
||||
weight = weight.narrow(offset[0], offset[1], offset[2])
|
||||
|
||||
if strength_model != 1.0:
|
||||
weight *= strength_model
|
||||
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
patch_type = v[0]
|
||||
v = v[1]
|
||||
|
||||
if patch_type == "diff":
|
||||
diff: torch.Tensor = v[0]
|
||||
# An extra flag to pad the weight if the diff's shape is larger than the weight
|
||||
do_pad_weight = len(v) > 1 and v[1]['pad_weight']
|
||||
if do_pad_weight and diff.shape != weight.shape:
|
||||
logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
|
||||
weight = pad_tensor_to_shape(weight, diff.shape)
|
||||
|
||||
if strength != 0.0:
|
||||
if diff.shape != weight.shape:
|
||||
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
|
||||
else:
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
dora_scale = v[4]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
|
||||
return weight
|
||||
736
comfy/model_base.py
Normal file
736
comfy/model_base.py
Normal file
@@ -0,0 +1,736 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
from comfy.ldm.cascade.stage_c import StageC
|
||||
from comfy.ldm.cascade.stage_b import StageB
|
||||
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
|
||||
import comfy.ldm.genmo.joint_model.asymm_models_joint
|
||||
import comfy.ldm.aura.mmdit
|
||||
import comfy.ldm.hydit.models
|
||||
import comfy.ldm.audio.dit
|
||||
import comfy.ldm.audio.embedders
|
||||
import comfy.ldm.flux.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.conds
|
||||
import comfy.ops
|
||||
from enum import Enum
|
||||
from . import utils
|
||||
import comfy.latent_formats
|
||||
import math
|
||||
|
||||
class ModelType(Enum):
|
||||
EPS = 1
|
||||
V_PREDICTION = 2
|
||||
V_PREDICTION_EDM = 3
|
||||
STABLE_CASCADE = 4
|
||||
EDM = 5
|
||||
FLOW = 6
|
||||
V_PREDICTION_CONTINUOUS = 7
|
||||
FLUX = 8
|
||||
|
||||
|
||||
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
|
||||
|
||||
|
||||
def model_sampling(model_config, model_type):
|
||||
s = ModelSamplingDiscrete
|
||||
|
||||
if model_type == ModelType.EPS:
|
||||
c = EPS
|
||||
elif model_type == ModelType.V_PREDICTION:
|
||||
c = V_PREDICTION
|
||||
elif model_type == ModelType.V_PREDICTION_EDM:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousEDM
|
||||
elif model_type == ModelType.FLOW:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingDiscreteFlow
|
||||
elif model_type == ModelType.STABLE_CASCADE:
|
||||
c = EPS
|
||||
s = StableCascadeSampling
|
||||
elif model_type == ModelType.EDM:
|
||||
c = EDM
|
||||
s = ModelSamplingContinuousEDM
|
||||
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
|
||||
c = V_PREDICTION
|
||||
s = ModelSamplingContinuousV
|
||||
elif model_type == ModelType.FLUX:
|
||||
c = comfy.model_sampling.CONST
|
||||
s = comfy.model_sampling.ModelSamplingFlux
|
||||
|
||||
class ModelSampling(s, c):
|
||||
pass
|
||||
|
||||
return ModelSampling(model_config)
|
||||
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
|
||||
super().__init__()
|
||||
|
||||
unet_config = model_config.unet_config
|
||||
self.latent_format = model_config.latent_format
|
||||
self.model_config = model_config
|
||||
self.manual_cast_dtype = model_config.manual_cast_dtype
|
||||
self.device = device
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
if comfy.model_management.force_channels_last():
|
||||
self.diffusion_model.to(memory_format=torch.channels_last)
|
||||
logging.debug("using channels last mode for diffusion model")
|
||||
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype))
|
||||
self.model_type = model_type
|
||||
self.model_sampling = model_sampling(model_config, model_type)
|
||||
|
||||
self.adm_channels = unet_config.get("adm_in_channels", None)
|
||||
if self.adm_channels is None:
|
||||
self.adm_channels = 0
|
||||
|
||||
self.concat_keys = ()
|
||||
logging.info("model_type {}".format(model_type.name))
|
||||
logging.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([xc] + [c_concat], dim=1)
|
||||
|
||||
context = c_crossattn
|
||||
dtype = self.get_dtype()
|
||||
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
|
||||
xc = xc.to(dtype)
|
||||
t = self.model_sampling.timestep(t).float()
|
||||
context = context.to(dtype)
|
||||
extra_conds = {}
|
||||
for o in kwargs:
|
||||
extra = kwargs[o]
|
||||
if hasattr(extra, "dtype"):
|
||||
if extra.dtype != torch.int and extra.dtype != torch.long:
|
||||
extra = extra.to(dtype)
|
||||
extra_conds[o] = extra
|
||||
|
||||
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
|
||||
def get_dtype(self):
|
||||
return self.diffusion_model.dtype
|
||||
|
||||
def is_adm(self):
|
||||
return self.adm_channels > 0
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return None
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
if len(self.concat_keys) > 0:
|
||||
cond_concat = []
|
||||
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
concat_latent_image = kwargs.get("concat_latent_image", None)
|
||||
if concat_latent_image is None:
|
||||
concat_latent_image = kwargs.get("latent_image", None)
|
||||
else:
|
||||
concat_latent_image = self.process_latent_in(concat_latent_image)
|
||||
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if concat_latent_image.shape[1:] != noise.shape[1:]:
|
||||
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
|
||||
|
||||
if denoise_mask is not None:
|
||||
if len(denoise_mask.shape) == len(noise.shape):
|
||||
denoise_mask = denoise_mask[:,:1]
|
||||
|
||||
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
|
||||
if denoise_mask.shape[-2:] != noise.shape[-2:]:
|
||||
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
|
||||
|
||||
for ck in self.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask.to(device))
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(self.blank_inpaint_image_like(noise))
|
||||
data = torch.cat(cond_concat, dim=1)
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
||||
|
||||
adm = self.encode_adm(**kwargs)
|
||||
if adm is not None:
|
||||
out['y'] = comfy.conds.CONDRegular(adm)
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
||||
|
||||
cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
|
||||
if cross_attn_cnet is not None:
|
||||
out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)
|
||||
|
||||
c_concat = kwargs.get("noise_concat", None)
|
||||
if c_concat is not None:
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat)
|
||||
|
||||
return out
|
||||
|
||||
def load_model_weights(self, sd, unet_prefix=""):
|
||||
to_load = {}
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k.startswith(unet_prefix):
|
||||
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
||||
|
||||
to_load = self.model_config.process_unet_state_dict(to_load)
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
||||
if len(m) > 0:
|
||||
logging.warning("unet missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.warning("unet unexpected: {}".format(u))
|
||||
del to_load
|
||||
return self
|
||||
|
||||
def process_latent_in(self, latent):
|
||||
return self.latent_format.process_in(latent)
|
||||
|
||||
def process_latent_out(self, latent):
|
||||
return self.latent_format.process_out(latent)
|
||||
|
||||
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
|
||||
extra_sds = []
|
||||
if clip_state_dict is not None:
|
||||
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
|
||||
if vae_state_dict is not None:
|
||||
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
|
||||
if clip_vision_state_dict is not None:
|
||||
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
|
||||
|
||||
unet_state_dict = self.diffusion_model.state_dict()
|
||||
|
||||
if self.model_config.scaled_fp8 is not None:
|
||||
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
|
||||
if self.model_type == ModelType.V_PREDICTION:
|
||||
unet_state_dict["v_pred"] = torch.tensor([])
|
||||
|
||||
for sd in extra_sds:
|
||||
unet_state_dict.update(sd)
|
||||
|
||||
return unet_state_dict
|
||||
|
||||
def set_inpaint(self):
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
blank_image[:,0] *= 0.8223
|
||||
blank_image[:,1] *= -0.6876
|
||||
blank_image[:,2] *= 0.6364
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
self.blank_inpaint_image_like = blank_inpaint_image_like
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
||||
dtype = self.get_dtype()
|
||||
if self.manual_cast_dtype is not None:
|
||||
dtype = self.manual_cast_dtype
|
||||
#TODO: this needs to be tweaked
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
|
||||
else:
|
||||
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
||||
area = input_shape[0] * math.prod(input_shape[2:])
|
||||
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
|
||||
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
noise_augment = noise_augment_merge
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
|
||||
return adm_out
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
else:
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
|
||||
|
||||
def sdxl_pooled(args, noise_augmentor):
|
||||
if "unclip_conditioning" in args:
|
||||
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
|
||||
else:
|
||||
return args["pooled_output"]
|
||||
|
||||
class SDXLRefiner(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
||||
else:
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
class SDXL(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
target_width = kwargs.get("target_width", width)
|
||||
target_height = kwargs.get("target_height", height)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([target_height])))
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
|
||||
class SVD_img2vid(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
fps_id = kwargs.get("fps", 6) - 1
|
||||
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
|
||||
augmentation = kwargs.get("augmentation_level", 0)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([fps_id])))
|
||||
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
|
||||
out.append(self.embedder(torch.Tensor([augmentation])))
|
||||
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
|
||||
return flat
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
adm = self.encode_adm(**kwargs)
|
||||
if adm is not None:
|
||||
out['y'] = comfy.conds.CONDRegular(adm)
|
||||
|
||||
latent_image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if latent_image is None:
|
||||
latent_image = torch.zeros_like(noise)
|
||||
|
||||
if latent_image.shape[1:] != noise.shape[1:]:
|
||||
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
||||
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
||||
|
||||
if "time_conditioning" in kwargs:
|
||||
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
|
||||
|
||||
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
|
||||
return out
|
||||
|
||||
class SV3D_u(SVD_img2vid):
|
||||
def encode_adm(self, **kwargs):
|
||||
augmentation = kwargs.get("augmentation_level", 0)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
|
||||
|
||||
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
|
||||
return flat
|
||||
|
||||
class SV3D_p(SVD_img2vid):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder_512 = Timestep(512)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
augmentation = kwargs.get("augmentation_level", 0)
|
||||
elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here
|
||||
azimuth = kwargs.get("azimuth", 0)
|
||||
noise = kwargs.get("noise", None)
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
|
||||
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0))))
|
||||
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0))))
|
||||
|
||||
out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out))
|
||||
return torch.cat(out, dim=1)
|
||||
|
||||
|
||||
class Stable_Zero123(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
|
||||
self.cc_projection.weight.copy_(cc_projection_weight)
|
||||
self.cc_projection.bias.copy_(cc_projection_bias)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
|
||||
latent_image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
|
||||
if latent_image is None:
|
||||
latent_image = torch.zeros_like(noise)
|
||||
|
||||
if latent_image.shape[1:] != noise.shape[1:]:
|
||||
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
||||
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
if cross_attn.shape[-1] != 768:
|
||||
cross_attn = self.cc_projection(cross_attn)
|
||||
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
||||
return out
|
||||
|
||||
class SD_X4Upscaler(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
|
||||
image = kwargs.get("concat_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
noise_augment = kwargs.get("noise_augmentation", 0.0)
|
||||
device = kwargs["device"]
|
||||
seed = kwargs["seed"] - 10
|
||||
|
||||
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)[:,:3]
|
||||
|
||||
if image.shape[1:] != noise.shape[1:]:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
noise_level = torch.tensor([noise_level], device=device)
|
||||
if noise_augment > 0:
|
||||
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
|
||||
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
|
||||
out['y'] = comfy.conds.CONDRegular(noise_level)
|
||||
return out
|
||||
|
||||
class IP2P:
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
image = torch.zeros_like(noise)
|
||||
|
||||
if image.shape[1:] != noise.shape[1:]:
|
||||
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image))
|
||||
adm = self.encode_adm(**kwargs)
|
||||
if adm is not None:
|
||||
out['y'] = comfy.conds.CONDRegular(adm)
|
||||
return out
|
||||
|
||||
class SD15_instructpix2pix(IP2P, BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.process_ip2p_image_in = lambda image: image
|
||||
|
||||
class SDXL_instructpix2pix(IP2P, SDXL):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
if model_type == ModelType.V_PREDICTION_EDM:
|
||||
self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p
|
||||
else:
|
||||
self.process_ip2p_image_in = lambda image: image #diffusers ip2p
|
||||
|
||||
|
||||
class StableCascade_C(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageC)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
clip_text_pooled = kwargs["pooled_output"]
|
||||
if clip_text_pooled is not None:
|
||||
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
|
||||
|
||||
if "unclip_conditioning" in kwargs:
|
||||
embeds = []
|
||||
for unclip_cond in kwargs["unclip_conditioning"]:
|
||||
weight = unclip_cond["strength"]
|
||||
embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
|
||||
clip_img = torch.cat(embeds, dim=1)
|
||||
else:
|
||||
clip_img = torch.zeros((1, 1, 768))
|
||||
out["clip_img"] = comfy.conds.CONDRegular(clip_img)
|
||||
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
||||
out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
|
||||
return out
|
||||
|
||||
|
||||
class StableCascade_B(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=StageB)
|
||||
self.diffusion_model.eval().requires_grad_(False)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
noise = kwargs.get("noise", None)
|
||||
|
||||
clip_text_pooled = kwargs["pooled_output"]
|
||||
if clip_text_pooled is not None:
|
||||
out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
|
||||
|
||||
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
|
||||
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
|
||||
|
||||
out["effnet"] = comfy.conds.CONDRegular(prior)
|
||||
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
||||
return out
|
||||
|
||||
|
||||
class SD3(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
|
||||
class AuraFlow(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.aura.mmdit.MMDiT)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
|
||||
class StableAudio1(BaseModel):
|
||||
def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer)
|
||||
self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
|
||||
self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
|
||||
self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights)
|
||||
self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = {}
|
||||
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
seconds_start = kwargs.get("seconds_start", 0)
|
||||
seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53))
|
||||
|
||||
seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device)
|
||||
seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device)
|
||||
|
||||
global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1))
|
||||
out['global_embed'] = comfy.conds.CONDRegular(global_embed)
|
||||
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1)
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
|
||||
sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
|
||||
d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()}
|
||||
for k in d:
|
||||
s = d[k]
|
||||
for l in s:
|
||||
sd["{}{}".format(k, l)] = s[l]
|
||||
return sd
|
||||
|
||||
class HunyuanDiT(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
|
||||
conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None)
|
||||
if conditioning_mt5xl is not None:
|
||||
out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl)
|
||||
|
||||
attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None)
|
||||
if attention_mask_mt5xl is not None:
|
||||
out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl)
|
||||
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
target_width = kwargs.get("target_width", width)
|
||||
target_height = kwargs.get("target_height", height)
|
||||
|
||||
out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
|
||||
return out
|
||||
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
|
||||
return out
|
||||
|
||||
class GenmoMochi(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
593
comfy/model_detection.py
Normal file
593
comfy/model_detection.py
Normal file
@@ -0,0 +1,593 @@
|
||||
import comfy.supported_models
|
||||
import comfy.supported_models_base
|
||||
import comfy.utils
|
||||
import math
|
||||
import logging
|
||||
import torch
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
while True:
|
||||
c = False
|
||||
for k in state_dict_keys:
|
||||
if k.startswith(prefix_string.format(count)):
|
||||
c = True
|
||||
break
|
||||
if c == False:
|
||||
break
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
|
||||
time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
|
||||
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
|
||||
return None
|
||||
|
||||
def detect_unet_config(state_dict, key_prefix):
|
||||
state_dict_keys = list(state_dict.keys())
|
||||
|
||||
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
|
||||
unet_config = {}
|
||||
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
|
||||
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
|
||||
unet_config["patch_size"] = patch_size
|
||||
final_layer = '{}final_layer.linear.weight'.format(key_prefix)
|
||||
if final_layer in state_dict:
|
||||
unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size)
|
||||
|
||||
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
|
||||
unet_config["input_size"] = None
|
||||
y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
|
||||
if y_key in state_dict_keys:
|
||||
unet_config["adm_in_channels"] = state_dict[y_key].shape[1]
|
||||
|
||||
context_key = '{}context_embedder.weight'.format(key_prefix)
|
||||
if context_key in state_dict_keys:
|
||||
in_features = state_dict[context_key].shape[1]
|
||||
out_features = state_dict[context_key].shape[0]
|
||||
unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
|
||||
num_patches_key = '{}pos_embed'.format(key_prefix)
|
||||
if num_patches_key in state_dict_keys:
|
||||
num_patches = state_dict[num_patches_key].shape[1]
|
||||
unet_config["num_patches"] = num_patches
|
||||
unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))
|
||||
|
||||
rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
|
||||
if rms_qk in state_dict_keys:
|
||||
unet_config["qk_norm"] = "rms"
|
||||
|
||||
unet_config["pos_embed_scaling_factor"] = None #unused for inference
|
||||
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
|
||||
if context_processor in state_dict_keys:
|
||||
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
|
||||
unet_config["x_block_self_attn_layers"] = []
|
||||
for key in state_dict_keys:
|
||||
if key.startswith('{}joint_blocks.'.format(key_prefix)) and key.endswith('.x_block.attn2.qkv.weight'):
|
||||
layer = key[len('{}joint_blocks.'.format(key_prefix)):-len('.x_block.attn2.qkv.weight')]
|
||||
unet_config["x_block_self_attn_layers"].append(int(layer))
|
||||
return unet_config
|
||||
|
||||
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
|
||||
unet_config = {}
|
||||
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
|
||||
if text_mapper_name in state_dict_keys:
|
||||
unet_config['stable_cascade_stage'] = 'c'
|
||||
w = state_dict[text_mapper_name]
|
||||
if w.shape[0] == 1536: #stage c lite
|
||||
unet_config['c_cond'] = 1536
|
||||
unet_config['c_hidden'] = [1536, 1536]
|
||||
unet_config['nhead'] = [24, 24]
|
||||
unet_config['blocks'] = [[4, 12], [12, 4]]
|
||||
elif w.shape[0] == 2048: #stage c full
|
||||
unet_config['c_cond'] = 2048
|
||||
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
|
||||
unet_config['stable_cascade_stage'] = 'b'
|
||||
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
|
||||
if w.shape[-1] == 640:
|
||||
unet_config['c_hidden'] = [320, 640, 1280, 1280]
|
||||
unet_config['nhead'] = [-1, -1, 20, 20]
|
||||
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
|
||||
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
|
||||
elif w.shape[-1] == 576: #stage b lite
|
||||
unet_config['c_hidden'] = [320, 576, 1152, 1152]
|
||||
unet_config['nhead'] = [-1, 9, 18, 18]
|
||||
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
|
||||
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
|
||||
return unet_config
|
||||
|
||||
if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit
|
||||
unet_config = {}
|
||||
unet_config["audio_model"] = "dit1.0"
|
||||
return unet_config
|
||||
|
||||
if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit
|
||||
unet_config = {}
|
||||
unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1]
|
||||
unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1]
|
||||
double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.')
|
||||
single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.')
|
||||
unet_config["n_double_layers"] = double_layers
|
||||
unet_config["n_layers"] = double_layers + single_layers
|
||||
return unet_config
|
||||
|
||||
if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT
|
||||
unet_config = {}
|
||||
unet_config["image_model"] = "hydit"
|
||||
unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
||||
unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0]
|
||||
if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2
|
||||
unet_config["mlp_ratio"] = 4.3637
|
||||
if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968:
|
||||
unet_config["size_cond"] = True
|
||||
unet_config["use_style_cond"] = True
|
||||
unet_config["image_model"] = "hydit1"
|
||||
return unet_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "flux"
|
||||
dit_config["in_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
dit_config["num_heads"] = 24
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "mochi_preview"
|
||||
dit_config["depth"] = 48
|
||||
dit_config["patch_size"] = 2
|
||||
dit_config["num_heads"] = 24
|
||||
dit_config["hidden_size_x"] = 3072
|
||||
dit_config["hidden_size_y"] = 1536
|
||||
dit_config["mlp_ratio_x"] = 4.0
|
||||
dit_config["mlp_ratio_y"] = 4.0
|
||||
dit_config["learn_sigma"] = False
|
||||
dit_config["in_channels"] = 12
|
||||
dit_config["qk_norm"] = True
|
||||
dit_config["qkv_bias"] = False
|
||||
dit_config["out_bias"] = True
|
||||
dit_config["attn_drop"] = 0.0
|
||||
dit_config["patch_embed_bias"] = True
|
||||
dit_config["posenc_preserve_area"] = True
|
||||
dit_config["timestep_mlp_bias"] = True
|
||||
dit_config["attend_to_padding"] = False
|
||||
dit_config["timestep_scale"] = 1000.0
|
||||
dit_config["use_t5"] = True
|
||||
dit_config["t5_feat_dim"] = 4096
|
||||
dit_config["t5_token_length"] = 256
|
||||
dit_config["rope_theta"] = 10000.0
|
||||
return dit_config
|
||||
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
unet_config = {
|
||||
"use_checkpoint": False,
|
||||
"image_size": 32,
|
||||
"use_spatial_transformer": True,
|
||||
"legacy": False
|
||||
}
|
||||
|
||||
y_input = '{}label_emb.0.0.weight'.format(key_prefix)
|
||||
if y_input in state_dict_keys:
|
||||
unet_config["num_classes"] = "sequential"
|
||||
unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
|
||||
else:
|
||||
unet_config["adm_in_channels"] = None
|
||||
|
||||
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
|
||||
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
|
||||
|
||||
out_key = '{}out.2.weight'.format(key_prefix)
|
||||
if out_key in state_dict:
|
||||
out_channels = state_dict[out_key].shape[0]
|
||||
else:
|
||||
out_channels = 4
|
||||
|
||||
num_res_blocks = []
|
||||
channel_mult = []
|
||||
attention_resolutions = []
|
||||
transformer_depth = []
|
||||
transformer_depth_output = []
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
video_model = False
|
||||
video_model_cross = False
|
||||
|
||||
current_res = 1
|
||||
count = 0
|
||||
|
||||
last_res_blocks = 0
|
||||
last_channel_mult = 0
|
||||
|
||||
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
|
||||
for count in range(input_block_count):
|
||||
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
||||
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
|
||||
|
||||
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
||||
if len(block_keys) == 0:
|
||||
break
|
||||
|
||||
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
|
||||
|
||||
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
|
||||
current_res *= 2
|
||||
last_res_blocks = 0
|
||||
last_channel_mult = 0
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
else:
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
||||
if res_block_prefix in block_keys:
|
||||
last_res_blocks += 1
|
||||
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
||||
|
||||
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth.append(out[0])
|
||||
if context_dim is None:
|
||||
context_dim = out[1]
|
||||
use_linear_in_transformer = out[2]
|
||||
video_model = out[3]
|
||||
video_model_cross = out[4]
|
||||
else:
|
||||
transformer_depth.append(0)
|
||||
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
|
||||
if res_block_prefix in block_keys_output:
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
|
||||
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
|
||||
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
||||
elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
|
||||
transformer_depth_middle = -1
|
||||
else:
|
||||
transformer_depth_middle = -2
|
||||
|
||||
unet_config["in_channels"] = in_channels
|
||||
unet_config["out_channels"] = out_channels
|
||||
unet_config["model_channels"] = model_channels
|
||||
unet_config["num_res_blocks"] = num_res_blocks
|
||||
unet_config["transformer_depth"] = transformer_depth
|
||||
unet_config["transformer_depth_output"] = transformer_depth_output
|
||||
unet_config["channel_mult"] = channel_mult
|
||||
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
||||
unet_config["context_dim"] = context_dim
|
||||
|
||||
if video_model:
|
||||
unet_config["extra_ff_mix_layer"] = True
|
||||
unet_config["use_spatial_context"] = True
|
||||
unet_config["merge_strategy"] = "learned_with_images"
|
||||
unet_config["merge_factor"] = 0.0
|
||||
unet_config["video_kernel_size"] = [3, 1, 1]
|
||||
unet_config["use_temporal_resblock"] = True
|
||||
unet_config["use_temporal_attention"] = True
|
||||
unet_config["disable_temporal_crossattention"] = not video_model_cross
|
||||
else:
|
||||
unet_config["use_temporal_resblock"] = False
|
||||
unet_config["use_temporal_attention"] = False
|
||||
|
||||
return unet_config
|
||||
|
||||
def model_config_from_unet_config(unet_config, state_dict=None):
|
||||
for model_config in comfy.supported_models.models:
|
||||
if model_config.matches(unet_config, state_dict):
|
||||
return model_config(unet_config)
|
||||
|
||||
logging.error("no match {}".format(unet_config))
|
||||
return None
|
||||
|
||||
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
|
||||
unet_config = detect_unet_config(state_dict, unet_key_prefix)
|
||||
if unet_config is None:
|
||||
return None
|
||||
model_config = model_config_from_unet_config(unet_config, state_dict)
|
||||
if model_config is None and use_base_if_no_match:
|
||||
model_config = comfy.supported_models_base.BASE(unet_config)
|
||||
|
||||
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix)
|
||||
if scaled_fp8_key in state_dict:
|
||||
scaled_fp8_weight = state_dict.pop(scaled_fp8_key)
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
|
||||
return model_config
|
||||
|
||||
def unet_prefix_from_state_dict(state_dict):
|
||||
candidates = ["model.diffusion_model.", #ldm/sgm models
|
||||
"model.model.", #audio models
|
||||
]
|
||||
counts = {k: 0 for k in candidates}
|
||||
for k in state_dict:
|
||||
for c in candidates:
|
||||
if k.startswith(c):
|
||||
counts[c] += 1
|
||||
break
|
||||
|
||||
top = max(counts, key=counts.get)
|
||||
if counts[top] > 5:
|
||||
return top
|
||||
else:
|
||||
return "model." #aura flow and others
|
||||
|
||||
|
||||
def convert_config(unet_config):
|
||||
new_config = unet_config.copy()
|
||||
num_res_blocks = new_config.get("num_res_blocks", None)
|
||||
channel_mult = new_config.get("channel_mult", None)
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
|
||||
if "attention_resolutions" in new_config:
|
||||
attention_resolutions = new_config.pop("attention_resolutions")
|
||||
transformer_depth = new_config.get("transformer_depth", None)
|
||||
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
|
||||
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
t_in = []
|
||||
t_out = []
|
||||
s = 1
|
||||
for i in range(len(num_res_blocks)):
|
||||
res = num_res_blocks[i]
|
||||
d = 0
|
||||
if s in attention_resolutions:
|
||||
d = transformer_depth[i]
|
||||
|
||||
t_in += [d] * res
|
||||
t_out += [d] * (res + 1)
|
||||
s *= 2
|
||||
transformer_depth = t_in
|
||||
transformer_depth_output = t_out
|
||||
new_config["transformer_depth"] = t_in
|
||||
new_config["transformer_depth_output"] = t_out
|
||||
new_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
|
||||
new_config["num_res_blocks"] = num_res_blocks
|
||||
return new_config
|
||||
|
||||
|
||||
def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
||||
match = {}
|
||||
transformer_depth = []
|
||||
|
||||
attn_res = 1
|
||||
down_blocks = count_blocks(state_dict, "down_blocks.{}")
|
||||
for i in range(down_blocks):
|
||||
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
|
||||
res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
|
||||
for ab in range(attn_blocks):
|
||||
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
|
||||
transformer_depth.append(transformer_count)
|
||||
if transformer_count > 0:
|
||||
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
|
||||
|
||||
attn_res *= 2
|
||||
if attn_blocks == 0:
|
||||
for i in range(res_blocks):
|
||||
transformer_depth.append(0)
|
||||
|
||||
match["transformer_depth"] = transformer_depth
|
||||
|
||||
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
|
||||
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
|
||||
match["adm_in_channels"] = None
|
||||
if "class_embedding.linear_1.weight" in state_dict:
|
||||
match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
|
||||
elif "add_embedding.linear_1.weight" in state_dict:
|
||||
match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
|
||||
|
||||
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
|
||||
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
|
||||
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
||||
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
|
||||
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
||||
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
|
||||
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
|
||||
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
|
||||
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
|
||||
'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
|
||||
'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True,
|
||||
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]}
|
||||
|
||||
SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
|
||||
'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
|
||||
'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
SD15_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
||||
'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
||||
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
||||
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
||||
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]
|
||||
|
||||
for unet_config in supported_models:
|
||||
matches = True
|
||||
for k in match:
|
||||
if match[k] != unet_config[k]:
|
||||
matches = False
|
||||
break
|
||||
if matches:
|
||||
return convert_config(unet_config)
|
||||
return None
|
||||
|
||||
def model_config_from_diffusers_unet(state_dict):
|
||||
unet_config = unet_config_from_diffusers_unet(state_dict)
|
||||
if unet_config is not None:
|
||||
return model_config_from_unet_config(unet_config)
|
||||
return None
|
||||
|
||||
def convert_diffusers_mmdit(state_dict, output_prefix=""):
|
||||
out_sd = {}
|
||||
|
||||
if 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
|
||||
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
|
||||
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
|
||||
elif 'x_embedder.weight' in state_dict: #Flux
|
||||
depth = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
|
||||
hidden_size = state_dict["x_embedder.bias"].shape[0]
|
||||
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
|
||||
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
|
||||
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
|
||||
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
|
||||
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
|
||||
else:
|
||||
return None
|
||||
|
||||
for k in sd_map:
|
||||
weight = state_dict.get(k, None)
|
||||
if weight is not None:
|
||||
t = sd_map[k]
|
||||
|
||||
if not isinstance(t, str):
|
||||
if len(t) > 2:
|
||||
fun = t[2]
|
||||
else:
|
||||
fun = lambda a: a
|
||||
offset = t[1]
|
||||
if offset is not None:
|
||||
old_weight = out_sd.get(t[0], None)
|
||||
if old_weight is None:
|
||||
old_weight = torch.empty_like(weight)
|
||||
if old_weight.shape[offset[0]] < offset[1] + offset[2]:
|
||||
exp = list(weight.shape)
|
||||
exp[offset[0]] = offset[1] + offset[2]
|
||||
new = torch.empty(exp, device=weight.device, dtype=weight.dtype)
|
||||
new[:old_weight.shape[0]] = old_weight
|
||||
old_weight = new
|
||||
|
||||
w = old_weight.narrow(offset[0], offset[1], offset[2])
|
||||
else:
|
||||
old_weight = weight
|
||||
w = weight
|
||||
w[:] = fun(weight)
|
||||
t = t[0]
|
||||
out_sd[t] = old_weight
|
||||
else:
|
||||
out_sd[t] = weight
|
||||
state_dict.pop(k)
|
||||
|
||||
return out_sd
|
||||
1131
comfy/model_management.py
Normal file
1131
comfy/model_management.py
Normal file
File diff suppressed because it is too large
Load Diff
572
comfy/model_patcher.py
Normal file
572
comfy/model_patcher.py
Normal file
@@ -0,0 +1,572 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
import uuid
|
||||
import collections
|
||||
import math
|
||||
|
||||
import comfy.utils
|
||||
import comfy.float
|
||||
import comfy.model_management
|
||||
import comfy.lora
|
||||
from comfy.comfy_types import UnetWrapperFunction
|
||||
|
||||
def string_to_seed(data):
|
||||
crc = 0xFFFFFFFF
|
||||
for byte in data:
|
||||
if isinstance(byte, str):
|
||||
byte = ord(byte)
|
||||
crc ^= byte
|
||||
for _ in range(8):
|
||||
if crc & 1:
|
||||
crc = (crc >> 1) ^ 0xEDB88320
|
||||
else:
|
||||
crc >>= 1
|
||||
return crc ^ 0xFFFFFFFF
|
||||
|
||||
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
|
||||
to = model_options["transformer_options"].copy()
|
||||
|
||||
if "patches_replace" not in to:
|
||||
to["patches_replace"] = {}
|
||||
else:
|
||||
to["patches_replace"] = to["patches_replace"].copy()
|
||||
|
||||
if name not in to["patches_replace"]:
|
||||
to["patches_replace"][name] = {}
|
||||
else:
|
||||
to["patches_replace"][name] = to["patches_replace"][name].copy()
|
||||
|
||||
if transformer_index is not None:
|
||||
block = (block_name, number, transformer_index)
|
||||
else:
|
||||
block = (block_name, number)
|
||||
to["patches_replace"][name][block] = patch
|
||||
model_options["transformer_options"] = to
|
||||
return model_options
|
||||
|
||||
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
|
||||
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
|
||||
if disable_cfg1_optimization:
|
||||
model_options["disable_cfg1_optimization"] = True
|
||||
return model_options
|
||||
|
||||
def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
|
||||
model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
|
||||
if disable_cfg1_optimization:
|
||||
model_options["disable_cfg1_optimization"] = True
|
||||
return model_options
|
||||
|
||||
def wipe_lowvram_weight(m):
|
||||
if hasattr(m, "prev_comfy_cast_weights"):
|
||||
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
||||
del m.prev_comfy_cast_weights
|
||||
m.weight_function = None
|
||||
m.bias_function = None
|
||||
|
||||
class LowVramPatch:
|
||||
def __init__(self, key, patches):
|
||||
self.key = key
|
||||
self.patches = patches
|
||||
def __call__(self, weight):
|
||||
intermediate_dtype = weight.dtype
|
||||
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
|
||||
intermediate_dtype = torch.float32
|
||||
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
|
||||
|
||||
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
|
||||
|
||||
def get_key_weight(model, key):
|
||||
set_func = None
|
||||
convert_func = None
|
||||
op_keys = key.rsplit('.', 1)
|
||||
if len(op_keys) < 2:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
else:
|
||||
op = comfy.utils.get_attr(model, op_keys[0])
|
||||
try:
|
||||
set_func = getattr(op, "set_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
weight = getattr(op, op_keys[1])
|
||||
if convert_func is not None:
|
||||
weight = comfy.utils.get_attr(model, key)
|
||||
|
||||
return weight, set_func, convert_func
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
||||
self.size = size
|
||||
self.model = model
|
||||
if not hasattr(self.model, 'device'):
|
||||
logging.debug("Model doesn't have a device attribute.")
|
||||
self.model.device = offload_device
|
||||
elif self.model.device is None:
|
||||
self.model.device = offload_device
|
||||
|
||||
self.patches = {}
|
||||
self.backup = {}
|
||||
self.object_patches = {}
|
||||
self.object_patches_backup = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
self.weight_inplace_update = weight_inplace_update
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
|
||||
if not hasattr(self.model, 'model_loaded_weight_memory'):
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
if not hasattr(self.model, 'lowvram_patch_counter'):
|
||||
self.model.lowvram_patch_counter = 0
|
||||
|
||||
if not hasattr(self.model, 'model_lowvram'):
|
||||
self.model.model_lowvram = False
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
return self.size
|
||||
self.size = comfy.model_management.module_size(self.model)
|
||||
return self.size
|
||||
|
||||
def loaded_size(self):
|
||||
return self.model.model_loaded_weight_memory
|
||||
|
||||
def lowvram_patch_counter(self):
|
||||
return self.model.lowvram_patch_counter
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
n.patches_uuid = self.patches_uuid
|
||||
|
||||
n.object_patches = self.object_patches.copy()
|
||||
n.model_options = copy.deepcopy(self.model_options)
|
||||
n.backup = self.backup
|
||||
n.object_patches_backup = self.object_patches_backup
|
||||
return n
|
||||
|
||||
def is_clone(self, other):
|
||||
if hasattr(other, 'model') and self.model is other.model:
|
||||
return True
|
||||
return False
|
||||
|
||||
def clone_has_same_weights(self, clone):
|
||||
if not self.is_clone(clone):
|
||||
return False
|
||||
|
||||
if len(self.patches) == 0 and len(clone.patches) == 0:
|
||||
return True
|
||||
|
||||
if self.patches_uuid == clone.patches_uuid:
|
||||
if len(self.patches) != len(clone.patches):
|
||||
logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
|
||||
else:
|
||||
return True
|
||||
|
||||
def memory_required(self, input_shape):
|
||||
return self.model.memory_required(input_shape=input_shape)
|
||||
|
||||
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
|
||||
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
||||
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
||||
else:
|
||||
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
||||
if disable_cfg1_optimization:
|
||||
self.model_options["disable_cfg1_optimization"] = True
|
||||
|
||||
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
|
||||
self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)
|
||||
|
||||
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
|
||||
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)
|
||||
|
||||
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
|
||||
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
||||
|
||||
def set_model_denoise_mask_function(self, denoise_mask_function):
|
||||
self.model_options["denoise_mask_function"] = denoise_mask_function
|
||||
|
||||
def set_model_patch(self, patch, name):
|
||||
to = self.model_options["transformer_options"]
|
||||
if "patches" not in to:
|
||||
to["patches"] = {}
|
||||
to["patches"][name] = to["patches"].get(name, []) + [patch]
|
||||
|
||||
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
|
||||
self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)
|
||||
|
||||
def set_model_attn1_patch(self, patch):
|
||||
self.set_model_patch(patch, "attn1_patch")
|
||||
|
||||
def set_model_attn2_patch(self, patch):
|
||||
self.set_model_patch(patch, "attn2_patch")
|
||||
|
||||
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
|
||||
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
|
||||
|
||||
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
|
||||
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
|
||||
|
||||
def set_model_attn1_output_patch(self, patch):
|
||||
self.set_model_patch(patch, "attn1_output_patch")
|
||||
|
||||
def set_model_attn2_output_patch(self, patch):
|
||||
self.set_model_patch(patch, "attn2_output_patch")
|
||||
|
||||
def set_model_input_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "input_block_patch")
|
||||
|
||||
def set_model_input_block_patch_after_skip(self, patch):
|
||||
self.set_model_patch(patch, "input_block_patch_after_skip")
|
||||
|
||||
def set_model_output_block_patch(self, patch):
|
||||
self.set_model_patch(patch, "output_block_patch")
|
||||
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
def get_model_object(self, name):
|
||||
if name in self.object_patches:
|
||||
return self.object_patches[name]
|
||||
else:
|
||||
if name in self.object_patches_backup:
|
||||
return self.object_patches_backup[name]
|
||||
else:
|
||||
return comfy.utils.get_attr(self.model, name)
|
||||
|
||||
def model_patches_to(self, device):
|
||||
to = self.model_options["transformer_options"]
|
||||
if "patches" in to:
|
||||
patches = to["patches"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for i in range(len(patch_list)):
|
||||
if hasattr(patch_list[i], "to"):
|
||||
patch_list[i] = patch_list[i].to(device)
|
||||
if "patches_replace" in to:
|
||||
patches = to["patches_replace"]
|
||||
for name in patches:
|
||||
patch_list = patches[name]
|
||||
for k in patch_list:
|
||||
if hasattr(patch_list[k], "to"):
|
||||
patch_list[k] = patch_list[k].to(device)
|
||||
if "model_function_wrapper" in self.model_options:
|
||||
wrap_func = self.model_options["model_function_wrapper"]
|
||||
if hasattr(wrap_func, "to"):
|
||||
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
||||
|
||||
def model_dtype(self):
|
||||
if hasattr(self.model, "get_dtype"):
|
||||
return self.model.get_dtype()
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
p = set()
|
||||
model_sd = self.model.state_dict()
|
||||
for k in patches:
|
||||
offset = None
|
||||
function = None
|
||||
if isinstance(k, str):
|
||||
key = k
|
||||
else:
|
||||
offset = k[1]
|
||||
key = k[0]
|
||||
if len(k) > 2:
|
||||
function = k[2]
|
||||
|
||||
if key in model_sd:
|
||||
p.add(k)
|
||||
current_patches = self.patches.get(key, [])
|
||||
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
|
||||
self.patches[key] = current_patches
|
||||
|
||||
self.patches_uuid = uuid.uuid4()
|
||||
return list(p)
|
||||
|
||||
def get_key_patches(self, filter_prefix=None):
|
||||
model_sd = self.model_state_dict()
|
||||
p = {}
|
||||
for k in model_sd:
|
||||
if filter_prefix is not None:
|
||||
if not k.startswith(filter_prefix):
|
||||
continue
|
||||
bk = self.backup.get(k, None)
|
||||
weight, set_func, convert_func = get_key_weight(self.model, k)
|
||||
if bk is not None:
|
||||
weight = bk.weight
|
||||
if convert_func is None:
|
||||
convert_func = lambda a, **kwargs: a
|
||||
|
||||
if k in self.patches:
|
||||
p[k] = [(weight, convert_func)] + self.patches[k]
|
||||
else:
|
||||
p[k] = [(weight, convert_func)]
|
||||
return p
|
||||
|
||||
def model_state_dict(self, filter_prefix=None):
|
||||
sd = self.model.state_dict()
|
||||
keys = list(sd.keys())
|
||||
if filter_prefix is not None:
|
||||
for k in keys:
|
||||
if not k.startswith(filter_prefix):
|
||||
sd.pop(k)
|
||||
return sd
|
||||
|
||||
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
|
||||
if key not in self.patches:
|
||||
return
|
||||
|
||||
weight, set_func, convert_func = get_key_weight(self.model, key)
|
||||
inplace_update = self.weight_inplace_update or inplace_update
|
||||
|
||||
if key not in self.backup:
|
||||
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
|
||||
|
||||
if device_to is not None:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
if convert_func is not None:
|
||||
temp_weight = convert_func(temp_weight, inplace=True)
|
||||
|
||||
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
|
||||
if set_func is None:
|
||||
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
|
||||
if inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, out_weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, out_weight)
|
||||
else:
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
mem_counter = 0
|
||||
patch_counter = 0
|
||||
lowvram_counter = 0
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"):
|
||||
loading.append((comfy.model_management.module_size(m), n, m))
|
||||
|
||||
load_completely = []
|
||||
loading.sort(reverse=True)
|
||||
for x in loading:
|
||||
n = x[1]
|
||||
m = x[2]
|
||||
module_mem = x[0]
|
||||
|
||||
lowvram_weight = False
|
||||
|
||||
if not full_load and hasattr(m, "comfy_cast_weights"):
|
||||
if mem_counter + module_mem >= lowvram_model_memory:
|
||||
lowvram_weight = True
|
||||
lowvram_counter += 1
|
||||
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
|
||||
continue
|
||||
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
|
||||
if lowvram_weight:
|
||||
if weight_key in self.patches:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(weight_key)
|
||||
else:
|
||||
m.weight_function = LowVramPatch(weight_key, self.patches)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
if force_patch_weights:
|
||||
self.patch_weight_to_device(bias_key)
|
||||
else:
|
||||
m.bias_function = LowVramPatch(bias_key, self.patches)
|
||||
patch_counter += 1
|
||||
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
else:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
if m.comfy_cast_weights:
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
if hasattr(m, "weight"):
|
||||
mem_counter += module_mem
|
||||
load_completely.append((module_mem, n, m))
|
||||
|
||||
load_completely.sort(reverse=True)
|
||||
for x in load_completely:
|
||||
n = x[1]
|
||||
m = x[2]
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
if hasattr(m, "comfy_patched_weights"):
|
||||
if m.comfy_patched_weights == True:
|
||||
continue
|
||||
|
||||
self.patch_weight_to_device(weight_key, device_to=device_to)
|
||||
self.patch_weight_to_device(bias_key, device_to=device_to)
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
m.comfy_patched_weights = True
|
||||
|
||||
for x in load_completely:
|
||||
x[2].to(device_to)
|
||||
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
mem_counter = self.model_size()
|
||||
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = mem_counter
|
||||
|
||||
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
|
||||
for k in self.object_patches:
|
||||
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
||||
if k not in self.object_patches_backup:
|
||||
self.object_patches_backup[k] = old
|
||||
|
||||
if lowvram_model_memory == 0:
|
||||
full_load = True
|
||||
else:
|
||||
full_load = False
|
||||
|
||||
if load_weights:
|
||||
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
|
||||
return self.model
|
||||
|
||||
def unpatch_model(self, device_to=None, unpatch_weights=True):
|
||||
if unpatch_weights:
|
||||
if self.model.model_lowvram:
|
||||
for m in self.model.modules():
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
self.model.model_lowvram = False
|
||||
self.model.lowvram_patch_counter = 0
|
||||
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
for k in keys:
|
||||
bk = self.backup[k]
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, k, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
||||
|
||||
self.backup.clear()
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.model.device = device_to
|
||||
self.model.model_loaded_weight_memory = 0
|
||||
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, "comfy_patched_weights"):
|
||||
del m.comfy_patched_weights
|
||||
|
||||
keys = list(self.object_patches_backup.keys())
|
||||
for k in keys:
|
||||
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
|
||||
|
||||
self.object_patches_backup.clear()
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = []
|
||||
|
||||
for n, m in self.model.named_modules():
|
||||
shift_lowvram = False
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
unload_list.append((module_mem, n, m))
|
||||
|
||||
unload_list.sort()
|
||||
for unload in unload_list:
|
||||
if memory_to_free < memory_freed:
|
||||
break
|
||||
module_mem = unload[0]
|
||||
n = unload[1]
|
||||
m = unload[2]
|
||||
weight_key = "{}.weight".format(n)
|
||||
bias_key = "{}.bias".format(n)
|
||||
|
||||
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
|
||||
for key in [weight_key, bias_key]:
|
||||
bk = self.backup.get(key, None)
|
||||
if bk is not None:
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
comfy.utils.set_attr_param(self.model, key, bk.weight)
|
||||
self.backup.pop(key)
|
||||
|
||||
m.to(device_to)
|
||||
if weight_key in self.patches:
|
||||
m.weight_function = LowVramPatch(weight_key, self.patches)
|
||||
patch_counter += 1
|
||||
if bias_key in self.patches:
|
||||
m.bias_function = LowVramPatch(bias_key, self.patches)
|
||||
patch_counter += 1
|
||||
|
||||
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
||||
m.comfy_cast_weights = True
|
||||
m.comfy_patched_weights = False
|
||||
memory_freed += module_mem
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.model_loaded_weight_memory -= memory_freed
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0):
|
||||
self.unpatch_model(unpatch_weights=False)
|
||||
self.patch_model(load_weights=False)
|
||||
full_load = False
|
||||
if self.model.model_lowvram == False:
|
||||
return 0
|
||||
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
|
||||
full_load = True
|
||||
current_used = self.model.model_loaded_weight_memory
|
||||
self.load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
|
||||
return self.model.model_loaded_weight_memory - current_used
|
||||
|
||||
def current_loaded_device(self):
|
||||
return self.model.device
|
||||
|
||||
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
|
||||
print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
|
||||
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
|
||||
314
comfy/model_sampling.py
Normal file
314
comfy/model_sampling.py
Normal file
@@ -0,0 +1,314 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
import math
|
||||
|
||||
class EPS:
|
||||
def calculate_input(self, sigma, noise):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
if max_denoise:
|
||||
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
|
||||
else:
|
||||
noise = noise * sigma
|
||||
|
||||
noise += latent_image
|
||||
return noise
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
return latent
|
||||
|
||||
class V_PREDICTION(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class EDM(V_PREDICTION):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class CONST:
|
||||
def calculate_input(self, sigma, noise):
|
||||
return noise
|
||||
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
return sigma * noise + (1.0 - sigma) * latent_image
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
return latent / (1.0 - sigma)
|
||||
|
||||
class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
beta_schedule = sampling_settings.get("beta_schedule", "linear")
|
||||
linear_start = sampling_settings.get("linear_start", 0.00085)
|
||||
linear_end = sampling_settings.get("linear_end", 0.012)
|
||||
timesteps = sampling_settings.get("timesteps", 1000)
|
||||
|
||||
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
|
||||
self.sigma_data = 1.0
|
||||
|
||||
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if given_betas is not None:
|
||||
betas = given_betas
|
||||
else:
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
def set_sigmas(self, sigmas):
|
||||
self.register_buffer('sigmas', sigmas.float())
|
||||
self.register_buffer('log_sigmas', sigmas.log().float())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
||||
|
||||
def sigma(self, timestep):
|
||||
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent * 999.0)).item()
|
||||
|
||||
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete):
|
||||
def timestep(self, sigma):
|
||||
return 0.25 * sigma.log()
|
||||
|
||||
def sigma(self, timestep):
|
||||
return (timestep / 0.25).exp()
|
||||
|
||||
class ModelSamplingContinuousEDM(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
sigma_min = sampling_settings.get("sigma_min", 0.002)
|
||||
sigma_max = sampling_settings.get("sigma_max", 120.0)
|
||||
sigma_data = sampling_settings.get("sigma_data", 1.0)
|
||||
self.set_parameters(sigma_min, sigma_max, sigma_data)
|
||||
|
||||
def set_parameters(self, sigma_min, sigma_max, sigma_data):
|
||||
self.sigma_data = sigma_data
|
||||
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
|
||||
|
||||
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
return 0.25 * sigma.log()
|
||||
|
||||
def sigma(self, timestep):
|
||||
return (timestep / 0.25).exp()
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
percent = 1.0 - percent
|
||||
|
||||
log_sigma_min = math.log(self.sigma_min)
|
||||
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
|
||||
|
||||
|
||||
class ModelSamplingContinuousV(ModelSamplingContinuousEDM):
|
||||
def timestep(self, sigma):
|
||||
return sigma.atan() / math.pi * 2
|
||||
|
||||
def sigma(self, timestep):
|
||||
return (timestep * math.pi / 2).tan()
|
||||
|
||||
|
||||
def time_snr_shift(alpha, t):
|
||||
if alpha == 1.0:
|
||||
return t
|
||||
return alpha * t / (1 + (alpha - 1) * t)
|
||||
|
||||
class ModelSamplingDiscreteFlow(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000))
|
||||
|
||||
def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000):
|
||||
self.shift = shift
|
||||
self.multiplier = multiplier
|
||||
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier)
|
||||
self.register_buffer('sigmas', ts)
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
return sigma * self.multiplier
|
||||
|
||||
def sigma(self, timestep):
|
||||
return time_snr_shift(self.shift, timestep / self.multiplier)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 1.0
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return 1.0 - percent
|
||||
|
||||
class StableCascadeSampling(ModelSamplingDiscrete):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
self.set_parameters(sampling_settings.get("shift", 1.0))
|
||||
|
||||
def set_parameters(self, shift=1.0, cosine_s=8e-3):
|
||||
self.shift = shift
|
||||
self.cosine_s = torch.tensor(cosine_s)
|
||||
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
|
||||
|
||||
#This part is just for compatibility with some schedulers in the codebase
|
||||
self.num_timesteps = 10000
|
||||
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
|
||||
for x in range(self.num_timesteps):
|
||||
t = (x + 1) / self.num_timesteps
|
||||
sigmas[x] = self.sigma(t)
|
||||
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
def sigma(self, timestep):
|
||||
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
|
||||
|
||||
if self.shift != 1.0:
|
||||
var = alpha_cumprod
|
||||
logSNR = (var/(1-var)).log()
|
||||
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
|
||||
alpha_cumprod = logSNR.sigmoid()
|
||||
|
||||
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
|
||||
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
|
||||
|
||||
def timestep(self, sigma):
|
||||
var = 1 / ((sigma * sigma) + 1)
|
||||
var = var.clamp(0, 1.0)
|
||||
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
|
||||
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
||||
return t
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent))
|
||||
|
||||
|
||||
def flux_time_shift(mu: float, sigma: float, t):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
class ModelSamplingFlux(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
self.set_parameters(shift=sampling_settings.get("shift", 1.15))
|
||||
|
||||
def set_parameters(self, shift=1.15, timesteps=10000):
|
||||
self.shift = shift
|
||||
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
|
||||
self.register_buffer('sigmas', ts)
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma):
|
||||
return sigma
|
||||
|
||||
def sigma(self, timestep):
|
||||
return flux_time_shift(self.shift, 1.0, timestep)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 1.0
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
return 1.0 - percent
|
||||
366
comfy/ops.py
Normal file
366
comfy/ops.py
Normal file
@@ -0,0 +1,366 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Stability AI
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args
|
||||
import comfy.float
|
||||
|
||||
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
|
||||
|
||||
def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
|
||||
|
||||
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
|
||||
if input is not None:
|
||||
if dtype is None:
|
||||
dtype = input.dtype
|
||||
if bias_dtype is None:
|
||||
bias_dtype = dtype
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(device)
|
||||
if s.bias is not None:
|
||||
has_function = s.bias_function is not None
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
bias = s.bias_function(bias)
|
||||
|
||||
has_function = s.weight_function is not None
|
||||
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
|
||||
if has_function:
|
||||
weight = s.weight_function(weight)
|
||||
return weight, bias
|
||||
|
||||
class CastWeightBiasOp:
|
||||
comfy_cast_weights = False
|
||||
weight_function = None
|
||||
bias_function = None
|
||||
|
||||
class disable_weight_init:
|
||||
class Linear(torch.nn.Linear, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
|
||||
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
else:
|
||||
weight = None
|
||||
bias = None
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input, output_size=None):
|
||||
num_spatial_dims = 2
|
||||
output_padding = self._output_padding(
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose2d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input, output_size=None):
|
||||
num_spatial_dims = 1
|
||||
output_padding = self._output_padding(
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose1d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Embedding(torch.nn.Embedding, CastWeightBiasOp):
|
||||
def reset_parameters(self):
|
||||
self.bias = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input, out_dtype=None):
|
||||
output_dtype = out_dtype
|
||||
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||
out_dtype = None
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
if "out_dtype" in kwargs:
|
||||
kwargs.pop("out_dtype")
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def conv_nd(s, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return s.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return s.Conv3d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class manual_cast(disable_weight_init):
|
||||
class Linear(disable_weight_init.Linear):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Conv1d(disable_weight_init.Conv1d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Conv2d(disable_weight_init.Conv2d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Conv3d(disable_weight_init.Conv3d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class GroupNorm(disable_weight_init.GroupNorm):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class LayerNorm(disable_weight_init.LayerNorm):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Embedding(disable_weight_init.Embedding):
|
||||
comfy_cast_weights = True
|
||||
|
||||
|
||||
def fp8_linear(self, input):
|
||||
dtype = self.weight.dtype
|
||||
if dtype not in [torch.float8_e4m3fn]:
|
||||
return None
|
||||
|
||||
tensor_2d = False
|
||||
if len(input.shape) == 2:
|
||||
tensor_2d = True
|
||||
input = input.unsqueeze(1)
|
||||
|
||||
|
||||
if len(input.shape) == 3:
|
||||
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
|
||||
w = w.t()
|
||||
|
||||
scale_weight = self.scale_weight
|
||||
scale_input = self.scale_input
|
||||
if scale_weight is None:
|
||||
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
else:
|
||||
scale_weight = scale_weight.to(input.device)
|
||||
|
||||
if scale_input is None:
|
||||
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
|
||||
inn = input.reshape(-1, input.shape[2]).to(dtype)
|
||||
else:
|
||||
scale_input = scale_input.to(input.device)
|
||||
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
|
||||
|
||||
if bias is not None:
|
||||
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
|
||||
else:
|
||||
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)
|
||||
|
||||
if isinstance(o, tuple):
|
||||
o = o[0]
|
||||
|
||||
if tensor_2d:
|
||||
return o.reshape(input.shape[0], -1)
|
||||
|
||||
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
|
||||
|
||||
return None
|
||||
|
||||
class fp8_ops(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def reset_parameters(self):
|
||||
self.scale_weight = None
|
||||
self.scale_input = None
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
if override_dtype is not None:
|
||||
kwargs['dtype'] = override_dtype
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def reset_parameters(self):
|
||||
if not hasattr(self, 'scale_weight'):
|
||||
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
|
||||
if not scale_input:
|
||||
self.scale_input = None
|
||||
|
||||
if not hasattr(self, 'scale_input'):
|
||||
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if fp8_matrix_mult:
|
||||
out = fp8_linear(self, input)
|
||||
if out is not None:
|
||||
return out
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
|
||||
if weight.numel() < input.numel(): #TODO: optimize
|
||||
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
|
||||
|
||||
def convert_weight(self, weight, inplace=False, **kwargs):
|
||||
if inplace:
|
||||
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
return weight
|
||||
else:
|
||||
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
|
||||
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
|
||||
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
|
||||
if inplace_update:
|
||||
self.weight.data.copy_(weight)
|
||||
else:
|
||||
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
||||
|
||||
return scaled_fp8_op
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
|
||||
|
||||
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
|
||||
return fp8_ops
|
||||
|
||||
if compute_dtype is None or weight_dtype == compute_dtype:
|
||||
return disable_weight_init
|
||||
|
||||
return manual_cast
|
||||
6
comfy/options.py
Normal file
6
comfy/options.py
Normal file
@@ -0,0 +1,6 @@
|
||||
|
||||
args_parsing = False
|
||||
|
||||
def enable_args_parsing(enable=True):
|
||||
global args_parsing
|
||||
args_parsing = enable
|
||||
50
comfy/sample.py
Normal file
50
comfy/sample.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.samplers
|
||||
import comfy.utils
|
||||
import numpy as np
|
||||
import logging
|
||||
|
||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
"""
|
||||
creates random noise given a latent image and a seed.
|
||||
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
||||
"""
|
||||
generator = torch.manual_seed(seed)
|
||||
if noise_inds is None:
|
||||
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||
|
||||
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
|
||||
noises = []
|
||||
for i in range(unique_inds[-1]+1):
|
||||
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||
if i in unique_inds:
|
||||
noises.append(noise)
|
||||
noises = [noises[i] for i in inverse]
|
||||
noises = torch.cat(noises, axis=0)
|
||||
return noises
|
||||
|
||||
def fix_empty_latent_channels(model, latent_image):
|
||||
latent_channels = model.get_model_object("latent_format").latent_channels #Resize the empty latent image so it has the right number of channels
|
||||
if latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
|
||||
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_channels, dim=1)
|
||||
return latent_image
|
||||
|
||||
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
|
||||
logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed")
|
||||
return model, positive, negative, noise_mask, []
|
||||
|
||||
def cleanup_additional_models(models):
|
||||
logging.warning("Warning: comfy.sample.cleanup_additional_models isn't used anymore and can be removed")
|
||||
|
||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
sampler = comfy.samplers.KSampler(model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
|
||||
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.to(comfy.model_management.intermediate_device())
|
||||
return samples
|
||||
|
||||
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
samples = comfy.samplers.sample(model, noise, positive, negative, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.to(comfy.model_management.intermediate_device())
|
||||
return samples
|
||||
78
comfy/sampler_helpers.py
Normal file
78
comfy/sampler_helpers.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.conds
|
||||
|
||||
def prepare_mask(noise_mask, shape, device):
|
||||
"""ensures noise mask is of proper dimensions"""
|
||||
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
||||
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
||||
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
|
||||
noise_mask = noise_mask.to(device)
|
||||
return noise_mask
|
||||
|
||||
def get_models_from_cond(cond, model_type):
|
||||
models = []
|
||||
for c in cond:
|
||||
if model_type in c:
|
||||
models += [c[model_type]]
|
||||
return models
|
||||
|
||||
def convert_cond(cond):
|
||||
out = []
|
||||
for c in cond:
|
||||
temp = c[1].copy()
|
||||
model_conds = temp.get("model_conds", {})
|
||||
if c[0] is not None:
|
||||
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
|
||||
temp["cross_attn"] = c[0]
|
||||
temp["model_conds"] = model_conds
|
||||
out.append(temp)
|
||||
return out
|
||||
|
||||
def get_additional_models(conds, dtype):
|
||||
"""loads additional models in conditioning"""
|
||||
cnets = []
|
||||
gligen = []
|
||||
|
||||
for k in conds:
|
||||
cnets += get_models_from_cond(conds[k], "control")
|
||||
gligen += get_models_from_cond(conds[k], "gligen")
|
||||
|
||||
control_nets = set(cnets)
|
||||
|
||||
inference_memory = 0
|
||||
control_models = []
|
||||
for m in control_nets:
|
||||
control_models += m.get_models()
|
||||
inference_memory += m.inference_memory_requirements(dtype)
|
||||
|
||||
gligen = [x[1] for x in gligen]
|
||||
models = control_models + gligen
|
||||
return models, inference_memory
|
||||
|
||||
def cleanup_additional_models(models):
|
||||
"""cleanup additional models that were loaded"""
|
||||
for m in models:
|
||||
if hasattr(m, 'cleanup'):
|
||||
m.cleanup()
|
||||
|
||||
|
||||
def prepare_sampling(model, noise_shape, conds):
|
||||
device = model.load_device
|
||||
real_model = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||||
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||||
real_model = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
def cleanup_models(conds, models):
|
||||
cleanup_additional_models(models)
|
||||
|
||||
control_cleanup = []
|
||||
for k in conds:
|
||||
control_cleanup += get_models_from_cond(conds[k], "control")
|
||||
|
||||
cleanup_additional_models(set(control_cleanup))
|
||||
855
comfy/samplers.py
Normal file
855
comfy/samplers.py
Normal file
@@ -0,0 +1,855 @@
|
||||
from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .extra_samplers import uni_pc
|
||||
import torch
|
||||
import collections
|
||||
from comfy import model_management
|
||||
import math
|
||||
import logging
|
||||
import comfy.sampler_helpers
|
||||
import scipy.stats
|
||||
import numpy
|
||||
|
||||
def get_area_and_mult(conds, x_in, timestep_in):
|
||||
dims = tuple(x_in.shape[2:])
|
||||
area = None
|
||||
strength = 1.0
|
||||
|
||||
if 'timestep_start' in conds:
|
||||
timestep_start = conds['timestep_start']
|
||||
if timestep_in[0] > timestep_start:
|
||||
return None
|
||||
if 'timestep_end' in conds:
|
||||
timestep_end = conds['timestep_end']
|
||||
if timestep_in[0] < timestep_end:
|
||||
return None
|
||||
if 'area' in conds:
|
||||
area = list(conds['area'])
|
||||
if 'strength' in conds:
|
||||
strength = conds['strength']
|
||||
|
||||
input_x = x_in
|
||||
if area is not None:
|
||||
for i in range(len(dims)):
|
||||
area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
|
||||
input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])
|
||||
|
||||
if 'mask' in conds:
|
||||
# Scale the mask to the size of the input
|
||||
# The mask should have been resized as we began the sampling process
|
||||
mask_strength = 1.0
|
||||
if "mask_strength" in conds:
|
||||
mask_strength = conds["mask_strength"]
|
||||
mask = conds['mask']
|
||||
assert(mask.shape[1:] == x_in.shape[2:])
|
||||
|
||||
mask = mask[:input_x.shape[0]]
|
||||
if area is not None:
|
||||
for i in range(len(dims)):
|
||||
mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
|
||||
|
||||
mask = mask * mask_strength
|
||||
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
||||
else:
|
||||
mask = torch.ones_like(input_x)
|
||||
mult = mask * strength
|
||||
|
||||
if 'mask' not in conds and area is not None:
|
||||
rr = 8
|
||||
for i in range(len(dims)):
|
||||
if area[len(dims) + i] != 0:
|
||||
for t in range(rr):
|
||||
m = mult.narrow(i + 2, t, 1)
|
||||
m *= ((1.0/rr) * (t + 1))
|
||||
if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
|
||||
for t in range(rr):
|
||||
m = mult.narrow(i + 2, area[i] - 1 - t, 1)
|
||||
m *= ((1.0/rr) * (t + 1))
|
||||
|
||||
conditioning = {}
|
||||
model_conds = conds["model_conds"]
|
||||
for c in model_conds:
|
||||
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
|
||||
|
||||
control = conds.get('control', None)
|
||||
|
||||
patches = None
|
||||
if 'gligen' in conds:
|
||||
gligen = conds['gligen']
|
||||
patches = {}
|
||||
gligen_type = gligen[0]
|
||||
gligen_model = gligen[1]
|
||||
if gligen_type == "position":
|
||||
gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
|
||||
else:
|
||||
gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
|
||||
|
||||
patches['middle_patch'] = [gligen_patch]
|
||||
|
||||
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
|
||||
return cond_obj(input_x, mult, conditioning, area, control, patches)
|
||||
|
||||
def cond_equal_size(c1, c2):
|
||||
if c1 is c2:
|
||||
return True
|
||||
if c1.keys() != c2.keys():
|
||||
return False
|
||||
for k in c1:
|
||||
if not c1[k].can_concat(c2[k]):
|
||||
return False
|
||||
return True
|
||||
|
||||
def can_concat_cond(c1, c2):
|
||||
if c1.input_x.shape != c2.input_x.shape:
|
||||
return False
|
||||
|
||||
def objects_concatable(obj1, obj2):
|
||||
if (obj1 is None) != (obj2 is None):
|
||||
return False
|
||||
if obj1 is not None:
|
||||
if obj1 is not obj2:
|
||||
return False
|
||||
return True
|
||||
|
||||
if not objects_concatable(c1.control, c2.control):
|
||||
return False
|
||||
|
||||
if not objects_concatable(c1.patches, c2.patches):
|
||||
return False
|
||||
|
||||
return cond_equal_size(c1.conditioning, c2.conditioning)
|
||||
|
||||
def cond_cat(c_list):
|
||||
c_crossattn = []
|
||||
c_concat = []
|
||||
c_adm = []
|
||||
crossattn_max_len = 0
|
||||
|
||||
temp = {}
|
||||
for x in c_list:
|
||||
for k in x:
|
||||
cur = temp.get(k, [])
|
||||
cur.append(x[k])
|
||||
temp[k] = cur
|
||||
|
||||
out = {}
|
||||
for k in temp:
|
||||
conds = temp[k]
|
||||
out[k] = conds[0].concat(conds[1:])
|
||||
|
||||
return out
|
||||
|
||||
def calc_cond_batch(model, conds, x_in, timestep, model_options):
|
||||
out_conds = []
|
||||
out_counts = []
|
||||
to_run = []
|
||||
|
||||
for i in range(len(conds)):
|
||||
out_conds.append(torch.zeros_like(x_in))
|
||||
out_counts.append(torch.ones_like(x_in) * 1e-37)
|
||||
|
||||
cond = conds[i]
|
||||
if cond is not None:
|
||||
for x in cond:
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
to_run += [(p, i)]
|
||||
|
||||
while len(to_run) > 0:
|
||||
first = to_run[0]
|
||||
first_shape = first[0][0].shape
|
||||
to_batch_temp = []
|
||||
for x in range(len(to_run)):
|
||||
if can_concat_cond(to_run[x][0], first[0]):
|
||||
to_batch_temp += [x]
|
||||
|
||||
to_batch_temp.reverse()
|
||||
to_batch = to_batch_temp[:1]
|
||||
|
||||
free_memory = model_management.get_free_memory(x_in.device)
|
||||
for i in range(1, len(to_batch_temp) + 1):
|
||||
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
|
||||
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
|
||||
if model.memory_required(input_shape) * 1.5 < free_memory:
|
||||
to_batch = batch_amount
|
||||
break
|
||||
|
||||
input_x = []
|
||||
mult = []
|
||||
c = []
|
||||
cond_or_uncond = []
|
||||
area = []
|
||||
control = None
|
||||
patches = None
|
||||
for x in to_batch:
|
||||
o = to_run.pop(x)
|
||||
p = o[0]
|
||||
input_x.append(p.input_x)
|
||||
mult.append(p.mult)
|
||||
c.append(p.conditioning)
|
||||
area.append(p.area)
|
||||
cond_or_uncond.append(o[1])
|
||||
control = p.control
|
||||
patches = p.patches
|
||||
|
||||
batch_chunks = len(cond_or_uncond)
|
||||
input_x = torch.cat(input_x)
|
||||
c = cond_cat(c)
|
||||
timestep_ = torch.cat([timestep] * batch_chunks)
|
||||
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
|
||||
|
||||
transformer_options = {}
|
||||
if 'transformer_options' in model_options:
|
||||
transformer_options = model_options['transformer_options'].copy()
|
||||
|
||||
if patches is not None:
|
||||
if "patches" in transformer_options:
|
||||
cur_patches = transformer_options["patches"].copy()
|
||||
for p in patches:
|
||||
if p in cur_patches:
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
|
||||
transformer_options["sigmas"] = timestep
|
||||
|
||||
c['transformer_options'] = transformer_options
|
||||
|
||||
if 'model_function_wrapper' in model_options:
|
||||
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
|
||||
else:
|
||||
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
|
||||
|
||||
for o in range(batch_chunks):
|
||||
cond_index = cond_or_uncond[o]
|
||||
a = area[o]
|
||||
if a is None:
|
||||
out_conds[cond_index] += output[o] * mult[o]
|
||||
out_counts[cond_index] += mult[o]
|
||||
else:
|
||||
out_c = out_conds[cond_index]
|
||||
out_cts = out_counts[cond_index]
|
||||
dims = len(a) // 2
|
||||
for i in range(dims):
|
||||
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
|
||||
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
|
||||
out_c += output[o] * mult[o]
|
||||
out_cts += mult[o]
|
||||
|
||||
for i in range(len(out_conds)):
|
||||
out_conds[i] /= out_counts[i]
|
||||
|
||||
return out_conds
|
||||
|
||||
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
|
||||
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
|
||||
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
|
||||
|
||||
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
|
||||
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
|
||||
cfg_result = x - model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
|
||||
|
||||
for fn in model_options.get("sampler_post_cfg_function", []):
|
||||
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
|
||||
"sigma": timestep, "model_options": model_options, "input": x}
|
||||
cfg_result = fn(args)
|
||||
|
||||
return cfg_result
|
||||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns denoised
|
||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
|
||||
uncond_ = None
|
||||
else:
|
||||
uncond_ = uncond
|
||||
|
||||
conds = [cond, uncond_]
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
|
||||
for fn in model_options.get("sampler_pre_cfg_function", []):
|
||||
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
out = fn(args)
|
||||
|
||||
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
|
||||
|
||||
|
||||
class KSamplerX0Inpaint:
|
||||
def __init__(self, model, sigmas):
|
||||
self.inner_model = model
|
||||
self.sigmas = sigmas
|
||||
def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
|
||||
if denoise_mask is not None:
|
||||
if "denoise_mask_function" in model_options:
|
||||
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
|
||||
out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
|
||||
if denoise_mask is not None:
|
||||
out = out * denoise_mask + self.latent_image * latent_mask
|
||||
return out
|
||||
|
||||
def simple_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
ss = len(s.sigmas) / steps
|
||||
for x in range(steps):
|
||||
sigs += [float(s.sigmas[-(1 + int(x * ss))])]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def ddim_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
x = 1
|
||||
if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001):
|
||||
steps += 1
|
||||
sigs = []
|
||||
else:
|
||||
sigs = [0.0]
|
||||
|
||||
ss = max(len(s.sigmas) // steps, 1)
|
||||
while x < len(s.sigmas):
|
||||
sigs += [float(s.sigmas[x])]
|
||||
x += ss
|
||||
sigs = sigs[::-1]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
s = model_sampling
|
||||
start = s.timestep(s.sigma_max)
|
||||
end = s.timestep(s.sigma_min)
|
||||
|
||||
append_zero = True
|
||||
if sgm:
|
||||
timesteps = torch.linspace(start, end, steps + 1)[:-1]
|
||||
else:
|
||||
if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001):
|
||||
steps += 1
|
||||
append_zero = False
|
||||
timesteps = torch.linspace(start, end, steps)
|
||||
|
||||
sigs = []
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
sigs.append(float(s.sigma(ts)))
|
||||
|
||||
if append_zero:
|
||||
sigs += [0.0]
|
||||
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
# Implemented based on: https://arxiv.org/abs/2407.12173
|
||||
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
||||
total_timesteps = (len(model_sampling.sigmas) - 1)
|
||||
ts = 1 - numpy.linspace(0, 1, steps, endpoint=False)
|
||||
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
|
||||
|
||||
sigs = []
|
||||
last_t = -1
|
||||
for t in ts:
|
||||
if t != last_t:
|
||||
sigs += [float(model_sampling.sigmas[int(t)])]
|
||||
last_t = t
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
# from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41
|
||||
def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None):
|
||||
if steps == 1:
|
||||
sigma_schedule = [1.0, 0.0]
|
||||
else:
|
||||
if linear_steps is None:
|
||||
linear_steps = steps // 2
|
||||
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
|
||||
threshold_noise_step_diff = linear_steps - threshold_noise * steps
|
||||
quadratic_steps = steps - linear_steps
|
||||
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2)
|
||||
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2)
|
||||
const = quadratic_coef * (linear_steps ** 2)
|
||||
quadratic_sigma_schedule = [
|
||||
quadratic_coef * (i ** 2) + linear_coef * i + const
|
||||
for i in range(linear_steps, steps)
|
||||
]
|
||||
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
|
||||
sigma_schedule = [1.0 - x for x in sigma_schedule]
|
||||
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
|
||||
|
||||
def get_mask_aabb(masks):
|
||||
if masks.numel() == 0:
|
||||
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
||||
|
||||
b = masks.shape[0]
|
||||
|
||||
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
|
||||
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
|
||||
for i in range(b):
|
||||
mask = masks[i]
|
||||
if mask.numel() == 0:
|
||||
continue
|
||||
if torch.max(mask != 0) == False:
|
||||
is_empty[i] = True
|
||||
continue
|
||||
y, x = torch.where(mask)
|
||||
bounding_boxes[i, 0] = torch.min(x)
|
||||
bounding_boxes[i, 1] = torch.min(y)
|
||||
bounding_boxes[i, 2] = torch.max(x)
|
||||
bounding_boxes[i, 3] = torch.max(y)
|
||||
|
||||
return bounding_boxes, is_empty
|
||||
|
||||
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
|
||||
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
|
||||
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
|
||||
for i in range(len(conditions)):
|
||||
c = conditions[i]
|
||||
if 'area' in c:
|
||||
area = c['area']
|
||||
if area[0] == "percentage":
|
||||
modified = c.copy()
|
||||
a = area[1:]
|
||||
a_len = len(a) // 2
|
||||
area = ()
|
||||
for d in range(len(dims)):
|
||||
area += (max(1, round(a[d] * dims[d])),)
|
||||
for d in range(len(dims)):
|
||||
area += (round(a[d + a_len] * dims[d]),)
|
||||
|
||||
modified['area'] = area
|
||||
c = modified
|
||||
conditions[i] = c
|
||||
|
||||
if 'mask' in c:
|
||||
mask = c['mask']
|
||||
mask = mask.to(device=device)
|
||||
modified = c.copy()
|
||||
if len(mask.shape) == len(dims):
|
||||
mask = mask.unsqueeze(0)
|
||||
if mask.shape[1:] != dims:
|
||||
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
|
||||
|
||||
if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
|
||||
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
|
||||
boxes, is_empty = get_mask_aabb(bounds)
|
||||
if is_empty[0]:
|
||||
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
|
||||
modified['area'] = (8, 8, 0, 0)
|
||||
else:
|
||||
box = boxes[0]
|
||||
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
|
||||
H = max(8, H)
|
||||
W = max(8, W)
|
||||
area = (int(H), int(W), int(Y), int(X))
|
||||
modified['area'] = area
|
||||
|
||||
modified['mask'] = mask
|
||||
conditions[i] = modified
|
||||
|
||||
def resolve_areas_and_cond_masks(conditions, h, w, device):
|
||||
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
|
||||
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
|
||||
if 'area' not in c:
|
||||
return
|
||||
|
||||
c_area = c['area']
|
||||
smallest = None
|
||||
for x in conds:
|
||||
if 'area' in x:
|
||||
a = x['area']
|
||||
if c_area[2] >= a[2] and c_area[3] >= a[3]:
|
||||
if a[0] + a[2] >= c_area[0] + c_area[2]:
|
||||
if a[1] + a[3] >= c_area[1] + c_area[3]:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
elif 'area' not in smallest:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
if smallest is None:
|
||||
return
|
||||
if 'area' in smallest:
|
||||
if smallest['area'] == c_area:
|
||||
return
|
||||
|
||||
out = c.copy()
|
||||
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
|
||||
conds += [out]
|
||||
|
||||
def calculate_start_end_timesteps(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
if 'start_percent' in x:
|
||||
timestep_start = s.percent_to_sigma(x['start_percent'])
|
||||
if 'end_percent' in x:
|
||||
timestep_end = s.percent_to_sigma(x['end_percent'])
|
||||
|
||||
if (timestep_start is not None) or (timestep_end is not None):
|
||||
n = x.copy()
|
||||
if (timestep_start is not None):
|
||||
n['timestep_start'] = timestep_start
|
||||
if (timestep_end is not None):
|
||||
n['timestep_end'] = timestep_end
|
||||
conds[t] = n
|
||||
|
||||
def pre_run_control(model, conds):
|
||||
s = model.model_sampling
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
|
||||
timestep_start = None
|
||||
timestep_end = None
|
||||
percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
|
||||
if 'control' in x:
|
||||
x['control'].pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
cond_other = []
|
||||
uncond_cnets = []
|
||||
uncond_other = []
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
if 'area' not in x:
|
||||
if name in x and x[name] is not None:
|
||||
cond_cnets.append(x[name])
|
||||
else:
|
||||
cond_other.append((x, t))
|
||||
for t in range(len(uncond)):
|
||||
x = uncond[t]
|
||||
if 'area' not in x:
|
||||
if name in x and x[name] is not None:
|
||||
uncond_cnets.append(x[name])
|
||||
else:
|
||||
uncond_other.append((x, t))
|
||||
|
||||
if len(uncond_cnets) > 0:
|
||||
return
|
||||
|
||||
for x in range(len(cond_cnets)):
|
||||
temp = uncond_other[x % len(uncond_other)]
|
||||
o = temp[0]
|
||||
if name in o and o[name] is not None:
|
||||
n = o.copy()
|
||||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond += [n]
|
||||
else:
|
||||
n = o.copy()
|
||||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond[temp[1]] = n
|
||||
|
||||
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
params = x.copy()
|
||||
params["device"] = device
|
||||
params["noise"] = noise
|
||||
default_width = None
|
||||
if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
|
||||
default_width = noise.shape[3] * 8
|
||||
params["width"] = params.get("width", default_width)
|
||||
params["height"] = params.get("height", noise.shape[2] * 8)
|
||||
params["prompt_type"] = params.get("prompt_type", prompt_type)
|
||||
for k in kwargs:
|
||||
if k not in params:
|
||||
params[k] = kwargs[k]
|
||||
|
||||
out = model_function(**params)
|
||||
x = x.copy()
|
||||
model_conds = x['model_conds'].copy()
|
||||
for k in out:
|
||||
model_conds[k] = out[k]
|
||||
x['model_conds'] = model_conds
|
||||
conds[t] = x
|
||||
return conds
|
||||
|
||||
class Sampler:
|
||||
def sample(self):
|
||||
pass
|
||||
|
||||
def max_denoise(self, model_wrap, sigmas):
|
||||
max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
self.sampler_function = sampler_function
|
||||
self.extra_options = extra_options
|
||||
self.inpaint_options = inpaint_options
|
||||
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
extra_args["denoise_mask"] = denoise_mask
|
||||
model_k = KSamplerX0Inpaint(model_wrap, sigmas)
|
||||
model_k.latent_image = latent_image
|
||||
if self.inpaint_options.get("random", False): #TODO: Should this be the default?
|
||||
generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
|
||||
model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
|
||||
else:
|
||||
model_k.noise = noise
|
||||
|
||||
noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
|
||||
|
||||
k_callback = None
|
||||
total_steps = len(sigmas) - 1
|
||||
if callback is not None:
|
||||
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
||||
|
||||
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
|
||||
samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
|
||||
return samples
|
||||
|
||||
|
||||
def ksampler(sampler_name, extra_options={}, inpaint_options={}):
|
||||
if sampler_name == "dpm_fast":
|
||||
def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
|
||||
if len(sigmas) <= 1:
|
||||
return noise
|
||||
|
||||
sigma_min = sigmas[-1]
|
||||
if sigma_min == 0:
|
||||
sigma_min = sigmas[-2]
|
||||
total_steps = len(sigmas) - 1
|
||||
return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
|
||||
sampler_function = dpm_fast_function
|
||||
elif sampler_name == "dpm_adaptive":
|
||||
def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
|
||||
if len(sigmas) <= 1:
|
||||
return noise
|
||||
|
||||
sigma_min = sigmas[-1]
|
||||
if sigma_min == 0:
|
||||
sigma_min = sigmas[-2]
|
||||
return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
|
||||
sampler_function = dpm_adaptive_function
|
||||
else:
|
||||
sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
|
||||
|
||||
return KSAMPLER(sampler_function, extra_options, inpaint_options)
|
||||
|
||||
|
||||
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
|
||||
for k in conds:
|
||||
conds[k] = conds[k][:]
|
||||
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
|
||||
|
||||
for k in conds:
|
||||
calculate_start_end_timesteps(model, conds[k])
|
||||
|
||||
if hasattr(model, 'extra_conds'):
|
||||
for k in conds:
|
||||
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for k in conds:
|
||||
for c in conds[k]:
|
||||
for kk in conds:
|
||||
if k != kk:
|
||||
create_cond_with_same_area_if_none(conds[kk], c)
|
||||
|
||||
for k in conds:
|
||||
pre_run_control(model, conds[k])
|
||||
|
||||
if "positive" in conds:
|
||||
positive = conds["positive"]
|
||||
for k in conds:
|
||||
if k != "positive":
|
||||
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
return conds
|
||||
|
||||
class CFGGuider:
|
||||
def __init__(self, model_patcher):
|
||||
self.model_patcher = model_patcher
|
||||
self.model_options = model_patcher.model_options
|
||||
self.original_conds = {}
|
||||
self.cfg = 1.0
|
||||
|
||||
def set_conds(self, positive, negative):
|
||||
self.inner_set_conds({"positive": positive, "negative": negative})
|
||||
|
||||
def set_cfg(self, cfg):
|
||||
self.cfg = cfg
|
||||
|
||||
def inner_set_conds(self, conds):
|
||||
for k in conds:
|
||||
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.predict_noise(*args, **kwargs)
|
||||
|
||||
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||
|
||||
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
|
||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
||||
latent_image = self.inner_model.process_latent_in(latent_image)
|
||||
|
||||
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
|
||||
|
||||
extra_args = {"model_options": self.model_options, "seed":seed}
|
||||
|
||||
samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
|
||||
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
if denoise_mask is not None:
|
||||
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
|
||||
|
||||
noise = noise.to(device)
|
||||
latent_image = latent_image.to(device)
|
||||
sigmas = sigmas.to(device)
|
||||
|
||||
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
|
||||
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
|
||||
del self.inner_model
|
||||
del self.conds
|
||||
del self.loaded_models
|
||||
return output
|
||||
|
||||
|
||||
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
cfg_guider = CFGGuider(model)
|
||||
cfg_guider.set_conds(positive, negative)
|
||||
cfg_guider.set_cfg(cfg)
|
||||
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||
|
||||
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"]
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
if scheduler_name == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
|
||||
elif scheduler_name == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
|
||||
elif scheduler_name == "normal":
|
||||
sigmas = normal_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "simple":
|
||||
sigmas = simple_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "sgm_uniform":
|
||||
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
|
||||
elif scheduler_name == "beta":
|
||||
sigmas = beta_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "linear_quadratic":
|
||||
sigmas = linear_quadratic_schedule(model_sampling, steps)
|
||||
else:
|
||||
logging.error("error invalid scheduler {}".format(scheduler_name))
|
||||
return sigmas
|
||||
|
||||
def sampler_object(name):
|
||||
if name == "uni_pc":
|
||||
sampler = KSAMPLER(uni_pc.sample_unipc)
|
||||
elif name == "uni_pc_bh2":
|
||||
sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
|
||||
elif name == "ddim":
|
||||
sampler = ksampler("euler", inpaint_options={"random": True})
|
||||
else:
|
||||
sampler = ksampler(name)
|
||||
return sampler
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = SCHEDULER_NAMES
|
||||
SAMPLERS = SAMPLER_NAMES
|
||||
DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
|
||||
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model = model
|
||||
self.device = device
|
||||
if scheduler not in self.SCHEDULERS:
|
||||
scheduler = self.SCHEDULERS[0]
|
||||
if sampler not in self.SAMPLERS:
|
||||
sampler = self.SAMPLERS[0]
|
||||
self.scheduler = scheduler
|
||||
self.sampler = sampler
|
||||
self.set_steps(steps, denoise)
|
||||
self.denoise = denoise
|
||||
self.model_options = model_options
|
||||
|
||||
def calculate_sigmas(self, steps):
|
||||
sigmas = None
|
||||
|
||||
discard_penultimate_sigma = False
|
||||
if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
|
||||
steps += 1
|
||||
discard_penultimate_sigma = True
|
||||
|
||||
sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
|
||||
|
||||
if discard_penultimate_sigma:
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
return sigmas
|
||||
|
||||
def set_steps(self, steps, denoise=None):
|
||||
self.steps = steps
|
||||
if denoise is None or denoise > 0.9999:
|
||||
self.sigmas = self.calculate_sigmas(steps).to(self.device)
|
||||
else:
|
||||
if denoise <= 0.0:
|
||||
self.sigmas = torch.FloatTensor([])
|
||||
else:
|
||||
new_steps = int(steps/denoise)
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas is None:
|
||||
sigmas = self.sigmas
|
||||
|
||||
if last_step is not None and last_step < (len(sigmas) - 1):
|
||||
sigmas = sigmas[:last_step + 1]
|
||||
if force_full_denoise:
|
||||
sigmas[-1] = 0
|
||||
|
||||
if start_step is not None:
|
||||
if start_step < (len(sigmas) - 1):
|
||||
sigmas = sigmas[start_step:]
|
||||
else:
|
||||
if latent_image is not None:
|
||||
return latent_image
|
||||
else:
|
||||
return torch.zeros_like(noise)
|
||||
|
||||
sampler = sampler_object(self.sampler)
|
||||
|
||||
return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
791
comfy/sd.py
Normal file
791
comfy/sd.py
Normal file
@@ -0,0 +1,791 @@
|
||||
import torch
|
||||
from enum import Enum
|
||||
import logging
|
||||
|
||||
from comfy import model_management
|
||||
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
|
||||
from .ldm.cascade.stage_a import StageA
|
||||
from .ldm.cascade.stage_c_coder import StageC_coder
|
||||
from .ldm.audio.autoencoder import AudioOobleckVAE
|
||||
import comfy.ldm.genmo.vae.model
|
||||
import yaml
|
||||
|
||||
import comfy.utils
|
||||
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
from . import diffusers_convert
|
||||
from . import model_detection
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sdxl_clip
|
||||
import comfy.text_encoders.sd2_clip
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.sa_t5
|
||||
import comfy.text_encoders.aura_t5
|
||||
import comfy.text_encoders.hydit
|
||||
import comfy.text_encoders.flux
|
||||
import comfy.text_encoders.long_clipl
|
||||
import comfy.text_encoders.genmo
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.taesd.taesd
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
key_map = {}
|
||||
if model is not None:
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
||||
if clip is not None:
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
|
||||
loaded = comfy.lora.load_lora(lora, key_map)
|
||||
if model is not None:
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
else:
|
||||
k = ()
|
||||
new_modelpatcher = None
|
||||
|
||||
if clip is not None:
|
||||
new_clip = clip.clone()
|
||||
k1 = new_clip.add_patches(loaded, strength_clip)
|
||||
else:
|
||||
k1 = ()
|
||||
new_clip = None
|
||||
k = set(k)
|
||||
k1 = set(k1)
|
||||
for x in loaded:
|
||||
if (x not in k) and (x not in k1):
|
||||
logging.warning("NOT LOADED {}".format(x))
|
||||
|
||||
return (new_modelpatcher, new_clip)
|
||||
|
||||
|
||||
class CLIP:
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
|
||||
if no_init:
|
||||
return
|
||||
params = target.params.copy()
|
||||
clip = target.clip
|
||||
tokenizer = target.tokenizer
|
||||
|
||||
load_device = model_options.get("load_device", model_management.text_encoder_device())
|
||||
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device())
|
||||
dtype = model_options.get("dtype", None)
|
||||
if dtype is None:
|
||||
dtype = model_management.text_encoder_dtype(load_device)
|
||||
|
||||
params['dtype'] = dtype
|
||||
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype)))
|
||||
params['model_options'] = model_options
|
||||
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
for dt in self.cond_stage_model.dtypes:
|
||||
if not model_management.supports_cast(load_device, dt):
|
||||
load_device = offload_device
|
||||
if params['device'] != offload_device:
|
||||
self.cond_stage_model.to(offload_device)
|
||||
logging.warning("Had to shift TE back.")
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
if params['device'] == load_device:
|
||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||
self.layer_idx = None
|
||||
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
||||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
n.patcher = self.patcher.clone()
|
||||
n.cond_stage_model = self.cond_stage_model
|
||||
n.tokenizer = self.tokenizer
|
||||
n.layer_idx = self.layer_idx
|
||||
return n
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def tokenize(self, text, return_word_ids=False):
|
||||
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
||||
|
||||
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
|
||||
self.cond_stage_model.reset_clip_options()
|
||||
|
||||
if self.layer_idx is not None:
|
||||
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
||||
|
||||
if return_pooled == "unprojected":
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
o = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = o[:2]
|
||||
if return_dict:
|
||||
out = {"cond": cond, "pooled_output": pooled}
|
||||
if len(o) > 2:
|
||||
for k in o[2]:
|
||||
out[k] = o[2][k]
|
||||
return out
|
||||
|
||||
if return_pooled:
|
||||
return cond, pooled
|
||||
return cond
|
||||
|
||||
def encode(self, text):
|
||||
tokens = self.tokenize(text)
|
||||
return self.encode_from_tokens(tokens)
|
||||
|
||||
def load_sd(self, sd, full_model=False):
|
||||
if full_model:
|
||||
return self.cond_stage_model.load_state_dict(sd, strict=False)
|
||||
else:
|
||||
return self.cond_stage_model.load_sd(sd)
|
||||
|
||||
def get_sd(self):
|
||||
sd_clip = self.cond_stage_model.state_dict()
|
||||
sd_tokenizer = self.tokenizer.state_dict()
|
||||
for k in sd_tokenizer:
|
||||
sd_clip[k] = sd_tokenizer[k]
|
||||
return sd_clip
|
||||
|
||||
def load_model(self):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
return self.patcher
|
||||
|
||||
def get_key_patches(self):
|
||||
return self.patcher.get_key_patches()
|
||||
|
||||
class VAE:
|
||||
def __init__(self, sd=None, device=None, config=None, dtype=None):
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
|
||||
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
|
||||
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
|
||||
self.downscale_ratio = 8
|
||||
self.upscale_ratio = 8
|
||||
self.latent_channels = 4
|
||||
self.latent_dim = 2
|
||||
self.output_channels = 3
|
||||
self.process_input = lambda image: image * 2.0 - 1.0
|
||||
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
if config is None:
|
||||
if "decoder.mid.block_1.mix_factor" in sd:
|
||||
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
decoder_config = encoder_config.copy()
|
||||
decoder_config["video_kernel_size"] = [3, 1, 1]
|
||||
decoder_config["alpha"] = 0.0
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
|
||||
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
|
||||
elif "taesd_decoder.1.weight" in sd:
|
||||
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
|
||||
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
|
||||
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
|
||||
self.first_stage_model = StageA()
|
||||
self.downscale_ratio = 4
|
||||
self.upscale_ratio = 4
|
||||
#TODO
|
||||
#self.memory_used_encode
|
||||
#self.memory_used_decode
|
||||
self.process_input = lambda image: image
|
||||
self.process_output = lambda image: image
|
||||
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
|
||||
self.first_stage_model = StageC_coder()
|
||||
self.downscale_ratio = 32
|
||||
self.latent_channels = 16
|
||||
new_sd = {}
|
||||
for k in sd:
|
||||
new_sd["encoder.{}".format(k)] = sd[k]
|
||||
sd = new_sd
|
||||
elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
|
||||
self.first_stage_model = StageC_coder()
|
||||
self.latent_channels = 16
|
||||
new_sd = {}
|
||||
for k in sd:
|
||||
new_sd["previewer.{}".format(k)] = sd[k]
|
||||
sd = new_sd
|
||||
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
|
||||
self.first_stage_model = StageC_coder()
|
||||
self.downscale_ratio = 32
|
||||
self.latent_channels = 16
|
||||
elif "decoder.conv_in.weight" in sd:
|
||||
#default SD1.x/SD2.x VAE parameters
|
||||
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||
|
||||
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
|
||||
ddconfig['ch_mult'] = [1, 2, 4]
|
||||
self.downscale_ratio = 4
|
||||
self.upscale_ratio = 4
|
||||
|
||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||
if 'quant_conv.weight' in sd:
|
||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
|
||||
else:
|
||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
||||
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
||||
elif "decoder.layers.1.layers.0.beta" in sd:
|
||||
self.first_stage_model = AudioOobleckVAE()
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
|
||||
self.latent_channels = 64
|
||||
self.output_channels = 2
|
||||
self.upscale_ratio = 2048
|
||||
self.downscale_ratio = 2048
|
||||
self.latent_dim = 1
|
||||
self.process_output = lambda audio: audio
|
||||
self.process_input = lambda audio: audio
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
|
||||
if "blocks.2.blocks.3.stack.5.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
|
||||
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd:
|
||||
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "encoder."})
|
||||
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE()
|
||||
self.latent_channels = 12
|
||||
self.latent_dim = 3
|
||||
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
|
||||
self.working_dtypes = [torch.float16, torch.float32]
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
return
|
||||
else:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
|
||||
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0:
|
||||
logging.warning("Missing VAE keys {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("Leftover VAE keys {}".format(u))
|
||||
|
||||
if device is None:
|
||||
device = model_management.vae_device()
|
||||
self.device = device
|
||||
offload_device = model_management.vae_offload_device()
|
||||
if dtype is None:
|
||||
dtype = model_management.vae_dtype(self.device, self.working_dtypes)
|
||||
self.vae_dtype = dtype
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
self.output_device = model_management.intermediate_device()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
|
||||
def vae_encode_crop_pixels(self, pixels):
|
||||
dims = pixels.shape[1:-1]
|
||||
for d in range(len(dims)):
|
||||
x = (dims[d] // self.downscale_ratio) * self.downscale_ratio
|
||||
x_offset = (dims[d] % self.downscale_ratio) // 2
|
||||
if x != dims[d]:
|
||||
pixels = pixels.narrow(d + 1, x_offset, x)
|
||||
return pixels
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
||||
output = self.process_output(
|
||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
|
||||
/ 3.0)
|
||||
return output
|
||||
|
||||
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
||||
return comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)
|
||||
|
||||
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
|
||||
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
|
||||
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
|
||||
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
|
||||
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
|
||||
|
||||
def decode(self, samples_in):
|
||||
pixel_samples = None
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
|
||||
for x in range(0, samples_in.shape[0], batch_number):
|
||||
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
|
||||
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
|
||||
if pixel_samples is None:
|
||||
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
||||
pixel_samples[x:x+batch_number] = out
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
dims = samples_in.ndim - 2
|
||||
if dims == 1:
|
||||
pixel_samples = self.decode_tiled_1d(samples_in)
|
||||
elif dims == 2:
|
||||
pixel_samples = self.decode_tiled_(samples_in)
|
||||
elif dims == 3:
|
||||
pixel_samples = self.decode_tiled_3d(samples_in)
|
||||
|
||||
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None):
|
||||
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
dims = samples.ndim - 2
|
||||
args = {}
|
||||
if tile_x is not None:
|
||||
args["tile_x"] = tile_x
|
||||
if tile_y is not None:
|
||||
args["tile_y"] = tile_y
|
||||
if overlap is not None:
|
||||
args["overlap"] = overlap
|
||||
|
||||
if dims == 1:
|
||||
args.pop("tile_y")
|
||||
output = self.decode_tiled_1d(samples, **args)
|
||||
elif dims == 2:
|
||||
output = self.decode_tiled_(samples, **args)
|
||||
elif dims == 3:
|
||||
output = self.decode_tiled_3d(samples, **args)
|
||||
return output.movedim(1, -1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if self.latent_dim == 3:
|
||||
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
|
||||
try:
|
||||
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int(free_memory / max(1, memory_used))
|
||||
batch_number = max(1, batch_number)
|
||||
samples = None
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device)
|
||||
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
|
||||
if samples is None:
|
||||
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
||||
samples[x:x + batch_number] = out
|
||||
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
if len(pixel_samples.shape) == 3:
|
||||
samples = self.encode_tiled_1d(pixel_samples)
|
||||
else:
|
||||
samples = self.encode_tiled_(pixel_samples)
|
||||
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
||||
return samples
|
||||
|
||||
def get_sd(self):
|
||||
return self.first_stage_model.state_dict()
|
||||
|
||||
class StyleModel:
|
||||
def __init__(self, model, device="cpu"):
|
||||
self.model = model
|
||||
|
||||
def get_cond(self, input):
|
||||
return self.model(input.last_hidden_state)
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
return StyleModel(model)
|
||||
|
||||
class CLIPType(Enum):
|
||||
STABLE_DIFFUSION = 1
|
||||
STABLE_CASCADE = 2
|
||||
SD3 = 3
|
||||
STABLE_AUDIO = 4
|
||||
HUNYUAN_DIT = 5
|
||||
FLUX = 6
|
||||
MOCHI = 7
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
|
||||
|
||||
|
||||
class TEModel(Enum):
|
||||
CLIP_L = 1
|
||||
CLIP_H = 2
|
||||
CLIP_G = 3
|
||||
T5_XXL = 4
|
||||
T5_XL = 5
|
||||
T5_BASE = 6
|
||||
|
||||
def detect_te_model(sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_G
|
||||
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_H
|
||||
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
|
||||
return TEModel.CLIP_L
|
||||
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
if weight.shape[-1] == 4096:
|
||||
return TEModel.T5_XXL
|
||||
elif weight.shape[-1] == 2048:
|
||||
return TEModel.T5_XL
|
||||
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
||||
return TEModel.T5_BASE
|
||||
return None
|
||||
|
||||
|
||||
def t5xxl_detect(clip_data):
|
||||
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
|
||||
|
||||
for sd in clip_data:
|
||||
if weight_name in sd:
|
||||
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
clip_data = state_dicts
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
|
||||
else:
|
||||
if "text_projection" in clip_data[i]:
|
||||
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
if len(clip_data) == 1:
|
||||
te_model = detect_te_model(clip_data[0])
|
||||
if te_model == TEModel.CLIP_G:
|
||||
if clip_type == CLIPType.STABLE_CASCADE:
|
||||
clip_target.clip = sdxl_clip.StableCascadeClipModel
|
||||
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
|
||||
elif clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif te_model == TEModel.CLIP_H:
|
||||
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
|
||||
elif te_model == TEModel.T5_XXL:
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else: #CLIPType.MOCHI
|
||||
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
||||
elif te_model == TEModel.T5_XL:
|
||||
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
|
||||
elif te_model == TEModel.T5_BASE:
|
||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||
else:
|
||||
if clip_type == CLIPType.SD3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
else:
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
elif len(clip_data) == 2:
|
||||
if clip_type == CLIPType.SD3:
|
||||
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
elif clip_type == CLIPType.HUNYUAN_DIT:
|
||||
clip_target.clip = comfy.text_encoders.hydit.HyditModel
|
||||
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
|
||||
elif clip_type == CLIPType.FLUX:
|
||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
elif len(clip_data) == 3:
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
|
||||
parameters = 0
|
||||
tokenizer_data = {}
|
||||
for c in clip_data:
|
||||
parameters += comfy.utils.calculate_parameters(c)
|
||||
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
|
||||
for c in clip_data:
|
||||
m, u = clip.load_sd(c)
|
||||
if len(m) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected: {}".format(u))
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
|
||||
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
|
||||
#TODO: this function is a mess and should be removed eventually
|
||||
if config is None:
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
|
||||
if "parameterization" in model_config_params:
|
||||
if model_config_params["parameterization"] == "v":
|
||||
m = model.clone()
|
||||
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION):
|
||||
pass
|
||||
m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
|
||||
model = m
|
||||
|
||||
layer_idx = clip_config.get("params", {}).get("layer_idx", None)
|
||||
if layer_idx is not None:
|
||||
clip.clip_layer(layer_idx)
|
||||
|
||||
return (model, clip, vae)
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
|
||||
if out is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
return out
|
||||
|
||||
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
|
||||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
model = None
|
||||
model_patcher = None
|
||||
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
|
||||
load_device = model_management.get_torch_device()
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
|
||||
if model_config is None:
|
||||
return None
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
|
||||
if model_config.clip_vision_prefix is not None:
|
||||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
||||
|
||||
if output_model:
|
||||
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
|
||||
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
|
||||
model.load_model_weights(sd, diffusion_model_prefix)
|
||||
|
||||
if output_vae:
|
||||
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
|
||||
vae_sd = model_config.process_vae_state_dict(vae_sd)
|
||||
vae = VAE(sd=vae_sd)
|
||||
|
||||
if output_clip:
|
||||
clip_target = model_config.clip_target(state_dict=sd)
|
||||
if clip_target is not None:
|
||||
clip_sd = model_config.process_clip_state_dict(sd)
|
||||
if len(clip_sd) > 0:
|
||||
parameters = comfy.utils.calculate_parameters(clip_sd)
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
|
||||
m, u = clip.load_sd(clip_sd, full_model=True)
|
||||
if len(m) > 0:
|
||||
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
||||
if len(m_filter) > 0:
|
||||
logging.warning("clip missing: {}".format(m))
|
||||
else:
|
||||
logging.debug("clip missing: {}".format(m))
|
||||
|
||||
if len(u) > 0:
|
||||
logging.debug("clip unexpected {}:".format(u))
|
||||
else:
|
||||
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
|
||||
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
logging.debug("left over keys: {}".format(left_over))
|
||||
|
||||
if output_model:
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
logging.info("loaded straight to GPU")
|
||||
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
||||
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
||||
dtype = model_options.get("dtype", None)
|
||||
|
||||
#Allow loading unets from checkpoint files
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
temp_sd = comfy.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
|
||||
if len(temp_sd) > 0:
|
||||
sd = temp_sd
|
||||
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
|
||||
load_device = model_management.get_torch_device()
|
||||
model_config = model_detection.model_config_from_unet(sd, "")
|
||||
|
||||
if model_config is not None:
|
||||
new_sd = sd
|
||||
else:
|
||||
new_sd = model_detection.convert_diffusers_mmdit(sd, "")
|
||||
if new_sd is not None: #diffusers mmdit
|
||||
model_config = model_detection.model_config_from_unet(new_sd, "")
|
||||
if model_config is None:
|
||||
return None
|
||||
else: #diffusers unet
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd)
|
||||
if model_config is None:
|
||||
return None
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in sd:
|
||||
new_sd[diffusers_keys[k]] = sd.pop(k)
|
||||
else:
|
||||
logging.warning("{} {}".format(diffusers_keys[k], k))
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None and model_config.scaled_fp8 is None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
if dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
else:
|
||||
unet_dtype = dtype
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
|
||||
if model_options.get("fp8_optimizations", False):
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
logging.info("left over keys in unet: {}".format(left_over))
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return model
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
||||
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
||||
|
||||
def load_unet_state_dict(sd, dtype=None):
|
||||
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
||||
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
||||
|
||||
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
||||
clip_sd = None
|
||||
load_models = [model]
|
||||
if clip is not None:
|
||||
load_models.append(clip.load_model())
|
||||
clip_sd = clip.get_sd()
|
||||
vae_sd = None
|
||||
if vae is not None:
|
||||
vae_sd = vae.get_sd()
|
||||
|
||||
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
||||
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
|
||||
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
|
||||
for k in extra_keys:
|
||||
sd[k] = extra_keys[k]
|
||||
|
||||
for k in sd:
|
||||
t = sd[k]
|
||||
if not t.is_contiguous():
|
||||
sd[k] = t.contiguous()
|
||||
|
||||
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
602
comfy/sd1_clip.py
Normal file
602
comfy/sd1_clip.py
Normal file
@@ -0,0 +1,602 @@
|
||||
import os
|
||||
|
||||
from transformers import CLIPTokenizer
|
||||
import comfy.ops
|
||||
import torch
|
||||
import traceback
|
||||
import zipfile
|
||||
from . import model_management
|
||||
import comfy.clip_model
|
||||
import json
|
||||
import logging
|
||||
import numbers
|
||||
|
||||
def gen_empty_tokens(special_tokens, length):
|
||||
start_token = special_tokens.get("start", None)
|
||||
end_token = special_tokens.get("end", None)
|
||||
pad_token = special_tokens.get("pad")
|
||||
output = []
|
||||
if start_token is not None:
|
||||
output.append(start_token)
|
||||
if end_token is not None:
|
||||
output.append(end_token)
|
||||
output += [pad_token] * (length - len(output))
|
||||
return output
|
||||
|
||||
class ClipTokenWeightEncoder:
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
to_encode = list()
|
||||
max_token_len = 0
|
||||
has_weights = False
|
||||
for x in token_weight_pairs:
|
||||
tokens = list(map(lambda a: a[0], x))
|
||||
max_token_len = max(len(tokens), max_token_len)
|
||||
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
|
||||
to_encode.append(tokens)
|
||||
|
||||
sections = len(to_encode)
|
||||
if has_weights or sections == 0:
|
||||
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
|
||||
|
||||
o = self.encode(to_encode)
|
||||
out, pooled = o[:2]
|
||||
|
||||
if pooled is not None:
|
||||
first_pooled = pooled[0:1].to(model_management.intermediate_device())
|
||||
else:
|
||||
first_pooled = pooled
|
||||
|
||||
output = []
|
||||
for k in range(0, sections):
|
||||
z = out[k:k+1]
|
||||
if has_weights:
|
||||
z_empty = out[-1]
|
||||
for i in range(len(z)):
|
||||
for j in range(len(z[i])):
|
||||
weight = token_weight_pairs[k][j][1]
|
||||
if weight != 1.0:
|
||||
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
|
||||
output.append(z)
|
||||
|
||||
if (len(output) == 0):
|
||||
r = (out[-1:].to(model_management.intermediate_device()), first_pooled)
|
||||
else:
|
||||
r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled)
|
||||
|
||||
if len(o) > 2:
|
||||
extra = {}
|
||||
for k in o[2]:
|
||||
v = o[2][k]
|
||||
if k == "attention_mask":
|
||||
v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device())
|
||||
extra[k] = v
|
||||
|
||||
r = r + (extra,)
|
||||
return r
|
||||
|
||||
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
|
||||
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
|
||||
if textmodel_json_config is None:
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
|
||||
with open(textmodel_json_config) as f:
|
||||
config = json.load(f)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
scaled_fp8 = None
|
||||
|
||||
if operations is None:
|
||||
scaled_fp8 = model_options.get("scaled_fp8", None)
|
||||
if scaled_fp8 is not None:
|
||||
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
|
||||
else:
|
||||
operations = comfy.ops.manual_cast
|
||||
|
||||
self.operations = operations
|
||||
self.transformer = model_class(config, dtype, device, self.operations)
|
||||
if scaled_fp8 is not None:
|
||||
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
|
||||
|
||||
self.num_layers = self.transformer.num_layers
|
||||
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.special_tokens = special_tokens
|
||||
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.enable_attention_masks = enable_attention_masks
|
||||
self.zero_out_masked = zero_out_masked
|
||||
|
||||
self.layer_norm_hidden_state = layer_norm_hidden_state
|
||||
self.return_projected_pooled = return_projected_pooled
|
||||
self.return_attention_masks = return_attention_masks
|
||||
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) < self.num_layers
|
||||
self.set_clip_options({"layer": layer_idx})
|
||||
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.layer = self.options_default[0]
|
||||
self.layer_idx = self.options_default[1]
|
||||
self.return_projected_pooled = self.options_default[2]
|
||||
|
||||
def set_up_textual_embeddings(self, tokens, current_embeds):
|
||||
out_tokens = []
|
||||
next_new_token = token_dict_size = current_embeds.weight.shape[0]
|
||||
embedding_weights = []
|
||||
|
||||
for x in tokens:
|
||||
tokens_temp = []
|
||||
for y in x:
|
||||
if isinstance(y, numbers.Integral):
|
||||
tokens_temp += [int(y)]
|
||||
else:
|
||||
if y.shape[0] == current_embeds.weight.shape[1]:
|
||||
embedding_weights += [y]
|
||||
tokens_temp += [next_new_token]
|
||||
next_new_token += 1
|
||||
else:
|
||||
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
|
||||
while len(tokens_temp) < len(x):
|
||||
tokens_temp += [self.special_tokens["pad"]]
|
||||
out_tokens += [tokens_temp]
|
||||
|
||||
n = token_dict_size
|
||||
if len(embedding_weights) > 0:
|
||||
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
||||
new_embedding.weight[:token_dict_size] = current_embeds.weight
|
||||
for x in embedding_weights:
|
||||
new_embedding.weight[n] = x
|
||||
n += 1
|
||||
self.transformer.set_input_embeddings(new_embedding)
|
||||
|
||||
processed_tokens = []
|
||||
for x in out_tokens:
|
||||
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
|
||||
|
||||
return processed_tokens
|
||||
|
||||
def forward(self, tokens):
|
||||
backup_embeds = self.transformer.get_input_embeddings()
|
||||
device = backup_embeds.weight.device
|
||||
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
|
||||
tokens = torch.LongTensor(tokens).to(device)
|
||||
|
||||
attention_mask = None
|
||||
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
|
||||
attention_mask = torch.zeros_like(tokens)
|
||||
end_token = self.special_tokens.get("end", -1)
|
||||
for x in range(attention_mask.shape[0]):
|
||||
for y in range(attention_mask.shape[1]):
|
||||
attention_mask[x, y] = 1
|
||||
if tokens[x, y] == end_token:
|
||||
break
|
||||
|
||||
attention_mask_model = None
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
|
||||
if self.layer == "last":
|
||||
z = outputs[0].float()
|
||||
else:
|
||||
z = outputs[1].float()
|
||||
|
||||
if self.zero_out_masked:
|
||||
z *= attention_mask.unsqueeze(-1).float()
|
||||
|
||||
pooled_output = None
|
||||
if len(outputs) >= 3:
|
||||
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
|
||||
pooled_output = outputs[3].float()
|
||||
elif outputs[2] is not None:
|
||||
pooled_output = outputs[2].float()
|
||||
|
||||
extra = {}
|
||||
if self.return_attention_masks:
|
||||
extra["attention_mask"] = attention_mask
|
||||
|
||||
if len(extra) > 0:
|
||||
return z, pooled_output, extra
|
||||
|
||||
return z, pooled_output
|
||||
|
||||
def encode(self, tokens):
|
||||
return self(tokens)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.transformer.load_state_dict(sd, strict=False)
|
||||
|
||||
def parse_parentheses(string):
|
||||
result = []
|
||||
current_item = ""
|
||||
nesting_level = 0
|
||||
for char in string:
|
||||
if char == "(":
|
||||
if nesting_level == 0:
|
||||
if current_item:
|
||||
result.append(current_item)
|
||||
current_item = "("
|
||||
else:
|
||||
current_item = "("
|
||||
else:
|
||||
current_item += char
|
||||
nesting_level += 1
|
||||
elif char == ")":
|
||||
nesting_level -= 1
|
||||
if nesting_level == 0:
|
||||
result.append(current_item + ")")
|
||||
current_item = ""
|
||||
else:
|
||||
current_item += char
|
||||
else:
|
||||
current_item += char
|
||||
if current_item:
|
||||
result.append(current_item)
|
||||
return result
|
||||
|
||||
def token_weights(string, current_weight):
|
||||
a = parse_parentheses(string)
|
||||
out = []
|
||||
for x in a:
|
||||
weight = current_weight
|
||||
if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
|
||||
x = x[1:-1]
|
||||
xx = x.rfind(":")
|
||||
weight *= 1.1
|
||||
if xx > 0:
|
||||
try:
|
||||
weight = float(x[xx+1:])
|
||||
x = x[:xx]
|
||||
except:
|
||||
pass
|
||||
out += token_weights(x, weight)
|
||||
else:
|
||||
out += [(x, current_weight)]
|
||||
return out
|
||||
|
||||
def escape_important(text):
|
||||
text = text.replace("\\)", "\0\1")
|
||||
text = text.replace("\\(", "\0\2")
|
||||
return text
|
||||
|
||||
def unescape_important(text):
|
||||
text = text.replace("\0\1", ")")
|
||||
text = text.replace("\0\2", "(")
|
||||
return text
|
||||
|
||||
def safe_load_embed_zip(embed_path):
|
||||
with zipfile.ZipFile(embed_path) as myzip:
|
||||
names = list(filter(lambda a: "data/" in a, myzip.namelist()))
|
||||
names.reverse()
|
||||
for n in names:
|
||||
with myzip.open(n) as myfile:
|
||||
data = myfile.read()
|
||||
number = len(data) // 4
|
||||
length_embed = 1024 #sd2.x
|
||||
if number < 768:
|
||||
continue
|
||||
if number % 768 == 0:
|
||||
length_embed = 768 #sd1.x
|
||||
num_embeds = number // length_embed
|
||||
embed = torch.frombuffer(data, dtype=torch.float)
|
||||
out = embed.reshape((num_embeds, length_embed)).clone()
|
||||
del embed
|
||||
return out
|
||||
|
||||
def expand_directory_list(directories):
|
||||
dirs = set()
|
||||
for x in directories:
|
||||
dirs.add(x)
|
||||
for root, subdir, file in os.walk(x, followlinks=True):
|
||||
dirs.add(root)
|
||||
return list(dirs)
|
||||
|
||||
def bundled_embed(embed, prefix, suffix): #bundled embedding in lora format
|
||||
i = 0
|
||||
out_list = []
|
||||
for k in embed:
|
||||
if k.startswith(prefix) and k.endswith(suffix):
|
||||
out_list.append(embed[k])
|
||||
if len(out_list) == 0:
|
||||
return None
|
||||
|
||||
return torch.cat(out_list, dim=0)
|
||||
|
||||
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
|
||||
if isinstance(embedding_directory, str):
|
||||
embedding_directory = [embedding_directory]
|
||||
|
||||
embedding_directory = expand_directory_list(embedding_directory)
|
||||
|
||||
valid_file = None
|
||||
for embed_dir in embedding_directory:
|
||||
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
|
||||
embed_dir = os.path.abspath(embed_dir)
|
||||
try:
|
||||
if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
|
||||
continue
|
||||
except:
|
||||
continue
|
||||
if not os.path.isfile(embed_path):
|
||||
extensions = ['.safetensors', '.pt', '.bin']
|
||||
for x in extensions:
|
||||
t = embed_path + x
|
||||
if os.path.isfile(t):
|
||||
valid_file = t
|
||||
break
|
||||
else:
|
||||
valid_file = embed_path
|
||||
if valid_file is not None:
|
||||
break
|
||||
|
||||
if valid_file is None:
|
||||
return None
|
||||
|
||||
embed_path = valid_file
|
||||
|
||||
embed_out = None
|
||||
|
||||
try:
|
||||
if embed_path.lower().endswith(".safetensors"):
|
||||
import safetensors.torch
|
||||
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
||||
else:
|
||||
if 'weights_only' in torch.load.__code__.co_varnames:
|
||||
try:
|
||||
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
||||
except:
|
||||
embed_out = safe_load_embed_zip(embed_path)
|
||||
else:
|
||||
embed = torch.load(embed_path, map_location="cpu")
|
||||
except Exception as e:
|
||||
logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name))
|
||||
return None
|
||||
|
||||
if embed_out is None:
|
||||
if 'string_to_param' in embed:
|
||||
values = embed['string_to_param'].values()
|
||||
embed_out = next(iter(values))
|
||||
elif isinstance(embed, list):
|
||||
out_list = []
|
||||
for x in range(len(embed)):
|
||||
for k in embed[x]:
|
||||
t = embed[x][k]
|
||||
if t.shape[-1] != embedding_size:
|
||||
continue
|
||||
out_list.append(t.reshape(-1, t.shape[-1]))
|
||||
embed_out = torch.cat(out_list, dim=0)
|
||||
elif embed_key is not None and embed_key in embed:
|
||||
embed_out = embed[embed_key]
|
||||
else:
|
||||
embed_out = bundled_embed(embed, 'bundle_emb.', '.string_to_param.*')
|
||||
if embed_out is None:
|
||||
embed_out = bundled_embed(embed, 'bundle_emb.', '.{}'.format(embed_key))
|
||||
if embed_out is None:
|
||||
values = embed.values()
|
||||
embed_out = next(iter(values))
|
||||
return embed_out
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
||||
self.max_length = max_length
|
||||
self.min_length = min_length
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
if has_start_token:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
self.end_token = empty[1]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
self.start_token = None
|
||||
self.end_token = empty[0]
|
||||
|
||||
if pad_token is not None:
|
||||
self.pad_token = pad_token
|
||||
elif pad_with_end:
|
||||
self.pad_token = self.end_token
|
||||
else:
|
||||
self.pad_token = 0
|
||||
|
||||
self.pad_with_end = pad_with_end
|
||||
self.pad_to_max_length = pad_to_max_length
|
||||
|
||||
vocab = self.tokenizer.get_vocab()
|
||||
self.inv_vocab = {v: k for k, v in vocab.items()}
|
||||
self.embedding_directory = embedding_directory
|
||||
self.max_word_length = 8
|
||||
self.embedding_identifier = "embedding:"
|
||||
self.embedding_size = embedding_size
|
||||
self.embedding_key = embedding_key
|
||||
|
||||
def _try_get_embedding(self, embedding_name:str):
|
||||
'''
|
||||
Takes a potential embedding name and tries to retrieve it.
|
||||
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
|
||||
'''
|
||||
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
|
||||
if embed is None:
|
||||
stripped = embedding_name.strip(',')
|
||||
if len(stripped) < len(embedding_name):
|
||||
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
|
||||
return (embed, embedding_name[len(stripped):])
|
||||
return (embed, "")
|
||||
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
'''
|
||||
Takes a prompt and converts it to a list of (token, weight, word id) elements.
|
||||
Tokens can both be integer tokens and pre computed CLIP tensors.
|
||||
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
|
||||
Returned list has the dimensions NxM where M is the input size of CLIP
|
||||
'''
|
||||
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
|
||||
#tokenize words
|
||||
tokens = []
|
||||
for weighted_segment, weight in parsed_weights:
|
||||
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
|
||||
to_tokenize = [x for x in to_tokenize if x != ""]
|
||||
for word in to_tokenize:
|
||||
#if we find an embedding, deal with the embedding
|
||||
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
|
||||
embedding_name = word[len(self.embedding_identifier):].strip('\n')
|
||||
embed, leftover = self._try_get_embedding(embedding_name)
|
||||
if embed is None:
|
||||
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
|
||||
else:
|
||||
if len(embed.shape) == 1:
|
||||
tokens.append([(embed, weight)])
|
||||
else:
|
||||
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
|
||||
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word
|
||||
if leftover != "":
|
||||
word = leftover
|
||||
else:
|
||||
continue
|
||||
#parse word
|
||||
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
|
||||
|
||||
#reshape token array to CLIP input size
|
||||
batched_tokens = []
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
for i, t_group in enumerate(tokens):
|
||||
#determine if we're going to try and keep the tokens in a single batch
|
||||
is_large = len(t_group) >= self.max_word_length
|
||||
|
||||
while len(t_group) > 0:
|
||||
if len(t_group) + len(batch) > self.max_length - 1:
|
||||
remaining_length = self.max_length - len(batch) - 1
|
||||
#break word in two and add end token
|
||||
if is_large:
|
||||
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
t_group = t_group[remaining_length:]
|
||||
#add end token and pad
|
||||
else:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
|
||||
#start new batch
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
else:
|
||||
batch.extend([(t,w,i+1) for t,w in t_group])
|
||||
t_group = []
|
||||
|
||||
#fill last batch
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
if self.min_length is not None and len(batch) < self.min_length:
|
||||
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
|
||||
|
||||
return batched_tokens
|
||||
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SD1Tokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer):
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
|
||||
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return getattr(self, self.clip).untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SD1CheckpointClipModel(SDClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, return_projected_pooled=False, dtype=dtype, model_options=model_options)
|
||||
|
||||
class SD1ClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, clip_name="l", clip_model=SD1CheckpointClipModel, name=None, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
if name is not None:
|
||||
self.clip_name = name
|
||||
self.clip = "{}".format(self.clip_name)
|
||||
else:
|
||||
self.clip_name = clip_name
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
|
||||
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
|
||||
|
||||
self.dtypes = set()
|
||||
if dtype is not None:
|
||||
self.dtypes.add(dtype)
|
||||
|
||||
def set_clip_options(self, options):
|
||||
getattr(self, self.clip).set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
getattr(self, self.clip).reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs = token_weight_pairs[self.clip_name]
|
||||
out = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
|
||||
return out
|
||||
|
||||
def load_sd(self, sd):
|
||||
return getattr(self, self.clip).load_sd(sd)
|
||||
25
comfy/sd1_clip_config.json
Normal file
25
comfy/sd1_clip_config.json
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.24.0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
48895
comfy/sd1_tokenizer/merges.txt
Normal file
48895
comfy/sd1_tokenizer/merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
24
comfy/sd1_tokenizer/special_tokens_map.json
Normal file
24
comfy/sd1_tokenizer/special_tokens_map.json
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<|endoftext|>",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
34
comfy/sd1_tokenizer/tokenizer_config.json
Normal file
34
comfy/sd1_tokenizer/tokenizer_config.json
Normal file
@@ -0,0 +1,34 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"name_or_path": "openai/clip-vit-large-patch14",
|
||||
"pad_token": "<|endoftext|>",
|
||||
"special_tokens_map_file": "./special_tokens_map.json",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
49410
comfy/sd1_tokenizer/vocab.json
Normal file
49410
comfy/sd1_tokenizer/vocab.json
Normal file
File diff suppressed because it is too large
Load Diff
95
comfy/sdxl_clip.py
Normal file
95
comfy/sdxl_clip.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from comfy import sd1_clip
|
||||
import torch
|
||||
import os
|
||||
|
||||
class SDXLClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None, model_options={}):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return super().load_sd(sd)
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
|
||||
|
||||
class SDXLTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||||
self.dtypes = set([dtype])
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.clip_l.set_clip_options(options)
|
||||
self.clip_g.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.clip_g.reset_clip_options()
|
||||
self.clip_l.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
cut_to = min(l_out.shape[1], g_out.shape[1])
|
||||
return torch.cat([l_out[:,:cut_to], g_out[:,:cut_to]], dim=-1), g_pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||
return self.clip_g.load_sd(sd)
|
||||
else:
|
||||
return self.clip_l.load_sd(sd)
|
||||
|
||||
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG, model_options=model_options)
|
||||
|
||||
|
||||
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||||
|
||||
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
|
||||
|
||||
class StableCascadeClipG(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return super().load_sd(sd)
|
||||
|
||||
class StableCascadeClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG, model_options=model_options)
|
||||
706
comfy/supported_models.py
Normal file
706
comfy/supported_models.py
Normal file
@@ -0,0 +1,706 @@
|
||||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sdxl_clip
|
||||
import comfy.text_encoders.sd2_clip
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.sa_t5
|
||||
import comfy.text_encoders.aura_t5
|
||||
import comfy.text_encoders.hydit
|
||||
import comfy.text_encoders.flux
|
||||
import comfy.text_encoders.genmo
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
|
||||
from . import diffusers_convert
|
||||
|
||||
class SD15(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"context_dim": 768,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": False,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_heads": 8,
|
||||
"num_head_channels": -1,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
k = list(state_dict.keys())
|
||||
for x in k:
|
||||
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
|
||||
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
|
||||
state_dict[y] = state_dict.pop(x)
|
||||
|
||||
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
|
||||
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
|
||||
if ids.dtype == torch.float32:
|
||||
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
replace_prefix = {}
|
||||
replace_prefix["cond_stage_model."] = "clip_l."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
|
||||
for p in pop_keys:
|
||||
if p in state_dict:
|
||||
state_dict.pop(p)
|
||||
|
||||
replace_prefix = {"clip_l.": "cond_stage_model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
|
||||
|
||||
class SD20(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_heads": -1,
|
||||
"num_head_channels": 64,
|
||||
"attn_precision": torch.float32,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def model_type(self, state_dict, prefix=""):
|
||||
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
|
||||
k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
|
||||
out = state_dict.get(k, None)
|
||||
if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
|
||||
return model_base.ModelType.V_PREDICTION
|
||||
return model_base.ModelType.EPS
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
replace_prefix = {}
|
||||
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
|
||||
replace_prefix["cond_stage_model.model."] = "clip_h."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {}
|
||||
replace_prefix["clip_h"] = "cond_stage_model.model"
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
|
||||
return state_dict
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd2_clip.SD2Tokenizer, comfy.text_encoders.sd2_clip.SD2ClipModel)
|
||||
|
||||
class SD21UnclipL(SD20):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 1536,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}
|
||||
|
||||
|
||||
class SD21UnclipH(SD20):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 2048,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}
|
||||
|
||||
class SDXLRefiner(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 384,
|
||||
"use_linear_in_transformer": True,
|
||||
"context_dim": 1280,
|
||||
"adm_in_channels": 2560,
|
||||
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXLRefiner(self, device=device)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
replace_prefix = {}
|
||||
replace_prefix["conditioner.embedders.0.model."] = "clip_g."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
|
||||
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {}
|
||||
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
|
||||
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
|
||||
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
|
||||
replace_prefix["clip_g"] = "conditioner.embedders.0.model"
|
||||
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
|
||||
return state_dict_g
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
|
||||
|
||||
class SDXL(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 2, 2, 10, 10],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
memory_usage_factor = 0.8
|
||||
|
||||
def model_type(self, state_dict, prefix=""):
|
||||
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
|
||||
self.latent_format = latent_formats.SDXL_Playground_2_5()
|
||||
self.sampling_settings["sigma_data"] = 0.5
|
||||
self.sampling_settings["sigma_max"] = 80.0
|
||||
self.sampling_settings["sigma_min"] = 0.002
|
||||
return model_base.ModelType.EDM
|
||||
elif "edm_vpred.sigma_max" in state_dict:
|
||||
self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
|
||||
if "edm_vpred.sigma_min" in state_dict:
|
||||
self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
|
||||
return model_base.ModelType.V_PREDICTION_EDM
|
||||
elif "v_pred" in state_dict:
|
||||
return model_base.ModelType.V_PREDICTION
|
||||
else:
|
||||
return model_base.ModelType.EPS
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
if self.inpaint_model():
|
||||
out.set_inpaint()
|
||||
return out
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
replace_prefix = {}
|
||||
|
||||
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
|
||||
replace_prefix["conditioner.embedders.1.model."] = "clip_g."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
|
||||
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {}
|
||||
keys_to_replace = {}
|
||||
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
|
||||
for k in state_dict:
|
||||
if k.startswith("clip_l"):
|
||||
state_dict_g[k] = state_dict[k]
|
||||
|
||||
state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
|
||||
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
|
||||
for p in pop_keys:
|
||||
if p in state_dict_g:
|
||||
state_dict_g.pop(p)
|
||||
|
||||
replace_prefix["clip_g"] = "conditioner.embedders.1.model"
|
||||
replace_prefix["clip_l"] = "conditioner.embedders.0"
|
||||
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
|
||||
return state_dict_g
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
|
||||
|
||||
class SSD1B(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 2, 2, 4, 4],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
class Segmind_Vega(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 1, 1, 2, 2],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
class KOALA_700M(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 2, 5],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
class KOALA_1B(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 2, 6],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
class SVD_img2vid(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"in_channels": 8,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
"context_dim": 1024,
|
||||
"adm_in_channels": 768,
|
||||
"use_temporal_attention": True,
|
||||
"use_temporal_resblock": True
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_heads": -1,
|
||||
"num_head_channels": 64,
|
||||
"attn_precision": torch.float32,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
|
||||
sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SVD_img2vid(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None
|
||||
|
||||
class SV3D_u(SVD_img2vid):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"in_channels": 8,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
"context_dim": 1024,
|
||||
"adm_in_channels": 256,
|
||||
"use_temporal_attention": True,
|
||||
"use_temporal_resblock": True
|
||||
}
|
||||
|
||||
vae_key_prefix = ["conditioner.embedders.1.encoder."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SV3D_u(self, device=device)
|
||||
return out
|
||||
|
||||
class SV3D_p(SV3D_u):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"in_channels": 8,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
|
||||
"context_dim": 1024,
|
||||
"adm_in_channels": 1280,
|
||||
"use_temporal_attention": True,
|
||||
"use_temporal_resblock": True
|
||||
}
|
||||
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SV3D_p(self, device=device)
|
||||
return out
|
||||
|
||||
class Stable_Zero123(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"context_dim": 768,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": False,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
"in_channels": 8,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_heads": 8,
|
||||
"num_head_channels": -1,
|
||||
}
|
||||
|
||||
required_keys = {
|
||||
"cc_projection.weight": None,
|
||||
"cc_projection.bias": None,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "cond_stage_model.model.visual."
|
||||
|
||||
latent_format = latent_formats.SD15
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return None
|
||||
|
||||
class SD_X4Upscaler(SD20):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 256,
|
||||
'in_channels': 7,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"disable_self_attentions": [True, True, True, False],
|
||||
"num_classes": 1000,
|
||||
"num_heads": 8,
|
||||
"num_head_channels": -1,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SD_X4
|
||||
|
||||
sampling_settings = {
|
||||
"linear_start": 0.0001,
|
||||
"linear_end": 0.02,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SD_X4Upscaler(self, device=device)
|
||||
return out
|
||||
|
||||
class Stable_Cascade_C(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"stable_cascade_stage": 'c',
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
|
||||
latent_format = latent_formats.SC_Prior
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 2.0,
|
||||
}
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoder."]
|
||||
clip_vision_prefix = "clip_l_vision."
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
key_list = list(state_dict.keys())
|
||||
for y in ["weight", "bias"]:
|
||||
suffix = "in_proj_{}".format(y)
|
||||
keys = filter(lambda a: a.endswith(suffix), key_list)
|
||||
for k_from in keys:
|
||||
weights = state_dict.pop(k_from)
|
||||
prefix = k_from[:-(len(suffix) + 1)]
|
||||
shape_from = weights.shape[0] // 3
|
||||
for x in range(3):
|
||||
p = ["to_q", "to_k", "to_v"]
|
||||
k_to = "{}.{}.{}".format(prefix, p[x], y)
|
||||
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
|
||||
if "clip_g.text_projection" in state_dict:
|
||||
state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
|
||||
return state_dict
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.StableCascade_C(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
|
||||
|
||||
class Stable_Cascade_B(Stable_Cascade_C):
|
||||
unet_config = {
|
||||
"stable_cascade_stage": 'b',
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
|
||||
latent_format = latent_formats.SC_B
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 1.0,
|
||||
}
|
||||
|
||||
clip_vision_prefix = None
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.StableCascade_B(self, device=device)
|
||||
return out
|
||||
|
||||
class SD15_instructpix2pix(SD15):
|
||||
unet_config = {
|
||||
"context_dim": 768,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": False,
|
||||
"adm_in_channels": None,
|
||||
"use_temporal_attention": False,
|
||||
"in_channels": 8,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SD15_instructpix2pix(self, device=device)
|
||||
|
||||
class SDXL_instructpix2pix(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 2, 2, 10, 10],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816,
|
||||
"use_temporal_attention": False,
|
||||
"in_channels": 8,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
|
||||
class SD3(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"in_channels": 16,
|
||||
"pos_embed_scaling_factor": None,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.SD3
|
||||
|
||||
memory_usage_factor = 1.2
|
||||
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.SD3(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
clip_l = False
|
||||
clip_g = False
|
||||
t5 = False
|
||||
dtype_t5 = None
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
|
||||
clip_l = True
|
||||
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
|
||||
clip_g = True
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
if "dtype_t5" in t5_detect:
|
||||
t5 = True
|
||||
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
|
||||
|
||||
class StableAudio(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"audio_model": "dit1.0",
|
||||
}
|
||||
|
||||
sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.StableAudio1
|
||||
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
vae_key_prefix = ["pretransform.model."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True)
|
||||
seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True)
|
||||
return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device)
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
for k in list(state_dict.keys()):
|
||||
if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero
|
||||
state_dict.pop(k)
|
||||
return state_dict
|
||||
|
||||
def process_unet_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "model.model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.sa_t5.SAT5Tokenizer, comfy.text_encoders.sa_t5.SAT5Model)
|
||||
|
||||
class AuraFlow(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"cond_seq_dim": 2048,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.73,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.AuraFlow(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model)
|
||||
|
||||
class HunyuanDiT(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "hydit",
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"attn_precision": torch.float32,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"linear_start": 0.00085,
|
||||
"linear_end": 0.018,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.HunyuanDiT(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hydit.HyditTokenizer, comfy.text_encoders.hydit.HyditModel)
|
||||
|
||||
class HunyuanDiT1(HunyuanDiT):
|
||||
unet_config = {
|
||||
"image_model": "hydit1",
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
|
||||
sampling_settings = {
|
||||
"linear_start" : 0.00085,
|
||||
"linear_end" : 0.03,
|
||||
}
|
||||
|
||||
class Flux(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
"guidance_embed": True,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 2.8
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Flux(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
|
||||
|
||||
class FluxSchnell(Flux):
|
||||
unet_config = {
|
||||
"image_model": "flux",
|
||||
"guidance_embed": False,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 1.0,
|
||||
}
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
|
||||
return out
|
||||
|
||||
class GenmoMochi(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "mochi_preview",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
"shift": 6.0,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Mochi
|
||||
|
||||
memory_usage_factor = 2.0 #TODO
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.GenmoMochi(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.genmo.MochiT5Tokenizer, comfy.text_encoders.genmo.mochi_te(**t5_detect))
|
||||
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell, GenmoMochi]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
119
comfy/supported_models_base.py
Normal file
119
comfy/supported_models_base.py
Normal file
@@ -0,0 +1,119 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
from . import latent_formats
|
||||
|
||||
class ClipTarget:
|
||||
def __init__(self, tokenizer, clip):
|
||||
self.clip = clip
|
||||
self.tokenizer = tokenizer
|
||||
self.params = {}
|
||||
|
||||
class BASE:
|
||||
unet_config = {}
|
||||
unet_extra_config = {
|
||||
"num_heads": -1,
|
||||
"num_head_channels": 64,
|
||||
}
|
||||
|
||||
required_keys = {}
|
||||
|
||||
clip_prefix = []
|
||||
clip_vision_prefix = None
|
||||
noise_aug_config = None
|
||||
sampling_settings = {}
|
||||
latent_format = latent_formats.LatentFormat
|
||||
vae_key_prefix = ["first_stage_model."]
|
||||
text_encoder_key_prefix = ["cond_stage_model."]
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
memory_usage_factor = 2.0
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
scaled_fp8 = None
|
||||
optimizations = {"fp8": False}
|
||||
|
||||
@classmethod
|
||||
def matches(s, unet_config, state_dict=None):
|
||||
for k in s.unet_config:
|
||||
if k not in unet_config or s.unet_config[k] != unet_config[k]:
|
||||
return False
|
||||
if state_dict is not None:
|
||||
for k in s.required_keys:
|
||||
if k not in state_dict:
|
||||
return False
|
||||
return True
|
||||
|
||||
def model_type(self, state_dict, prefix=""):
|
||||
return model_base.ModelType.EPS
|
||||
|
||||
def inpaint_model(self):
|
||||
return self.unet_config["in_channels"] > 4
|
||||
|
||||
def __init__(self, unet_config):
|
||||
self.unet_config = unet_config.copy()
|
||||
self.sampling_settings = self.sampling_settings.copy()
|
||||
self.latent_format = self.latent_format()
|
||||
self.optimizations = self.optimizations.copy()
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
if self.noise_aug_config is not None:
|
||||
out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
else:
|
||||
out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
if self.inpaint_model():
|
||||
out.set_inpaint()
|
||||
return out
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
|
||||
return state_dict
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
||||
def process_vae_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": self.text_encoder_key_prefix[0]}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def process_clip_vision_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {}
|
||||
if self.clip_vision_prefix is not None:
|
||||
replace_prefix[""] = self.clip_vision_prefix
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def process_unet_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "model.diffusion_model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def process_vae_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": self.vae_key_prefix[0]}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
|
||||
def set_inference_dtype(self, dtype, manual_cast_dtype):
|
||||
self.unet_config['dtype'] = dtype
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
299
comfy/t2i_adapter/adapter.py
Normal file
299
comfy/t2i_adapter/adapter.py
Normal file
@@ -0,0 +1,299 @@
|
||||
#taken from https://github.com/TencentARC/T2I-Adapter
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if not self.use_conv:
|
||||
padding = [x.shape[2] % 2, x.shape[3] % 2]
|
||||
self.op.padding = padding
|
||||
|
||||
x = self.op(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
||||
super().__init__()
|
||||
ps = ksize // 2
|
||||
if in_c != out_c or sk == False:
|
||||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
# print('n_in')
|
||||
self.in_conv = None
|
||||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
||||
if sk == False:
|
||||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
self.skep = None
|
||||
|
||||
self.down = down
|
||||
if self.down == True:
|
||||
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
||||
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
if self.in_conv is not None: # edit
|
||||
x = self.in_conv(x)
|
||||
|
||||
h = self.block1(x)
|
||||
h = self.act(h)
|
||||
h = self.block2(h)
|
||||
if self.skep is not None:
|
||||
return h + self.skep(x)
|
||||
else:
|
||||
return h + x
|
||||
|
||||
|
||||
class Adapter(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
|
||||
super(Adapter, self).__init__()
|
||||
self.unshuffle_amount = 8
|
||||
resblock_no_downsample = []
|
||||
resblock_downsample = [3, 2, 1]
|
||||
self.xl = xl
|
||||
if self.xl:
|
||||
self.unshuffle_amount = 16
|
||||
resblock_no_downsample = [1]
|
||||
resblock_downsample = [2]
|
||||
|
||||
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
|
||||
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
for j in range(nums_rb):
|
||||
if (i in resblock_downsample) and (j == 0):
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
elif (i in resblock_no_downsample) and (j == 0):
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
else:
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
x = self.unshuffle(x)
|
||||
# extract features
|
||||
features = []
|
||||
x = self.conv_in(x)
|
||||
for i in range(len(self.channels)):
|
||||
for j in range(self.nums_rb):
|
||||
idx = i * self.nums_rb + j
|
||||
x = self.body[idx](x)
|
||||
if self.xl:
|
||||
features.append(None)
|
||||
if i == 0:
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
if i == 2:
|
||||
features.append(None)
|
||||
else:
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
features.append(x)
|
||||
|
||||
features = features[::-1]
|
||||
|
||||
if self.xl:
|
||||
return {"input": features[1:], "middle": features[:1]}
|
||||
else:
|
||||
return {"input": features}
|
||||
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
"""Subclass torch's LayerNorm to handle fp16."""
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
orig_type = x.dtype
|
||||
ret = super().forward(x.type(torch.float32))
|
||||
return ret.type(orig_type)
|
||||
|
||||
|
||||
class QuickGELU(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
||||
super().__init__()
|
||||
|
||||
self.attn = nn.MultiheadAttention(d_model, n_head)
|
||||
self.ln_1 = LayerNorm(d_model)
|
||||
self.mlp = nn.Sequential(
|
||||
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
|
||||
("c_proj", nn.Linear(d_model * 4, d_model))]))
|
||||
self.ln_2 = LayerNorm(d_model)
|
||||
self.attn_mask = attn_mask
|
||||
|
||||
def attention(self, x: torch.Tensor):
|
||||
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
||||
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = x + self.attention(self.ln_1(x))
|
||||
x = x + self.mlp(self.ln_2(x))
|
||||
return x
|
||||
|
||||
|
||||
class StyleAdapter(nn.Module):
|
||||
|
||||
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
|
||||
super().__init__()
|
||||
|
||||
scale = width ** -0.5
|
||||
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
|
||||
self.num_token = num_token
|
||||
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
|
||||
self.ln_post = LayerNorm(width)
|
||||
self.ln_pre = LayerNorm(width)
|
||||
self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
|
||||
|
||||
def forward(self, x):
|
||||
# x shape [N, HW+1, C]
|
||||
style_embedding = self.style_embedding + torch.zeros(
|
||||
(x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
|
||||
x = torch.cat([x, style_embedding], dim=1)
|
||||
x = self.ln_pre(x)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer_layes(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
|
||||
x = self.ln_post(x[:, -self.num_token:, :])
|
||||
x = x @ self.proj
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock_light(nn.Module):
|
||||
def __init__(self, in_c):
|
||||
super().__init__()
|
||||
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.block1(x)
|
||||
h = self.act(h)
|
||||
h = self.block2(h)
|
||||
|
||||
return h + x
|
||||
|
||||
|
||||
class extractor(nn.Module):
|
||||
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
|
||||
super().__init__()
|
||||
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
|
||||
self.body = []
|
||||
for _ in range(nums_rb):
|
||||
self.body.append(ResnetBlock_light(inter_c))
|
||||
self.body = nn.Sequential(*self.body)
|
||||
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
|
||||
self.down = down
|
||||
if self.down == True:
|
||||
self.down_opt = Downsample(in_c, use_conv=False)
|
||||
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
x = self.in_conv(x)
|
||||
x = self.body(x)
|
||||
x = self.out_conv(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Adapter_light(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
|
||||
super(Adapter_light, self).__init__()
|
||||
self.unshuffle_amount = 8
|
||||
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
|
||||
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
self.xl = False
|
||||
|
||||
for i in range(len(channels)):
|
||||
if i == 0:
|
||||
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
|
||||
else:
|
||||
self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
x = self.unshuffle(x)
|
||||
# extract features
|
||||
features = []
|
||||
for i in range(len(self.channels)):
|
||||
x = self.body[i](x)
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
features.append(x)
|
||||
|
||||
return {"input": features[::-1]}
|
||||
79
comfy/taesd/taesd.py
Normal file
79
comfy/taesd/taesd.py
Normal file
@@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Tiny AutoEncoder for Stable Diffusion
|
||||
(DNN for encoding / decoding SD's latent space)
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.utils
|
||||
import comfy.ops
|
||||
|
||||
def conv(n_in, n_out, **kwargs):
|
||||
return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
||||
|
||||
class Clamp(nn.Module):
|
||||
def forward(self, x):
|
||||
return torch.tanh(x / 3) * 3
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, n_in, n_out):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
||||
self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
||||
self.fuse = nn.ReLU()
|
||||
def forward(self, x):
|
||||
return self.fuse(self.conv(x) + self.skip(x))
|
||||
|
||||
def Encoder(latent_channels=4):
|
||||
return nn.Sequential(
|
||||
conv(3, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, latent_channels),
|
||||
)
|
||||
|
||||
|
||||
def Decoder(latent_channels=4):
|
||||
return nn.Sequential(
|
||||
Clamp(), conv(latent_channels, 64), nn.ReLU(),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), conv(64, 3),
|
||||
)
|
||||
|
||||
class TAESD(nn.Module):
|
||||
latent_magnitude = 3
|
||||
latent_shift = 0.5
|
||||
|
||||
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4):
|
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
||||
super().__init__()
|
||||
self.taesd_encoder = Encoder(latent_channels=latent_channels)
|
||||
self.taesd_decoder = Decoder(latent_channels=latent_channels)
|
||||
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
|
||||
self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
|
||||
if encoder_path is not None:
|
||||
self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
|
||||
if decoder_path is not None:
|
||||
self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
|
||||
|
||||
@staticmethod
|
||||
def scale_latents(x):
|
||||
"""raw latents -> [0, 1]"""
|
||||
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
|
||||
|
||||
@staticmethod
|
||||
def unscale_latents(x):
|
||||
"""[0, 1] -> raw latents"""
|
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
||||
|
||||
def decode(self, x):
|
||||
x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
|
||||
x_sample = x_sample.sub(0.5).mul(2)
|
||||
return x_sample
|
||||
|
||||
def encode(self, x):
|
||||
return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
|
||||
22
comfy/text_encoders/aura_t5.py
Normal file
22
comfy/text_encoders/aura_t5.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from comfy import sd1_clip
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
|
||||
class PT5XlModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_config_xl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 2, "pad": 1}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True, model_options=model_options)
|
||||
|
||||
class PT5XlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
|
||||
|
||||
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="pile_t5xl", tokenizer=PT5XlTokenizer)
|
||||
|
||||
class AuraT5Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, name="pile_t5xl", clip_model=PT5XlModel, **kwargs)
|
||||
140
comfy/text_encoders/bert.py
Normal file
140
comfy/text_encoders/bert.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
|
||||
class BertAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
self.heads = heads
|
||||
self.query = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.key = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.value = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
q = self.query(x)
|
||||
k = self.key(x)
|
||||
v = self.value(x)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return out
|
||||
|
||||
class BertOutput(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
|
||||
self.LayerNorm = operations.LayerNorm(output_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
# self.dropout = nn.Dropout(0.0)
|
||||
|
||||
def forward(self, x, y):
|
||||
x = self.dense(x)
|
||||
# hidden_states = self.dropout(hidden_states)
|
||||
x = self.LayerNorm(x + y)
|
||||
return x
|
||||
|
||||
class BertAttentionBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.self = BertAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.output = BertOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
y = self.self(x, mask, optimized_attention)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertIntermediate(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(embed_dim, intermediate_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense(x)
|
||||
return torch.nn.functional.gelu(x)
|
||||
|
||||
|
||||
class BertBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = BertAttentionBlock(embed_dim, heads, layer_norm_eps, dtype, device, operations)
|
||||
self.intermediate = BertIntermediate(embed_dim, intermediate_dim, dtype, device, operations)
|
||||
self.output = BertOutput(intermediate_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
x = self.attention(x, mask, optimized_attention)
|
||||
y = self.intermediate(x)
|
||||
return self.output(y, x)
|
||||
|
||||
class BertEncoder(torch.nn.Module):
|
||||
def __init__(self, num_layers, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([BertBlock(embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
class BertEmbeddings(torch.nn.Module):
|
||||
def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.word_embeddings = operations.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device)
|
||||
self.position_embeddings = operations.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device)
|
||||
self.token_type_embeddings = operations.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, token_type_ids=None, dtype=None):
|
||||
x = self.word_embeddings(input_tokens, out_dtype=dtype)
|
||||
x += comfy.ops.cast_to_input(self.position_embeddings.weight[:x.shape[1]], x)
|
||||
if token_type_ids is not None:
|
||||
x += self.token_type_embeddings(token_type_ids, out_dtype=x.dtype)
|
||||
else:
|
||||
x += comfy.ops.cast_to_input(self.token_type_embeddings.weight[0], x)
|
||||
x = self.LayerNorm(x)
|
||||
return x
|
||||
|
||||
|
||||
class BertModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
|
||||
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||
x = self.embeddings(input_tokens, dtype=dtype)
|
||||
mask = None
|
||||
if attention_mask is not None:
|
||||
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
||||
|
||||
x, i = self.encoder(x, mask, intermediate_output)
|
||||
return x, i
|
||||
|
||||
|
||||
class BertModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.bert = BertModel_(config_dict, dtype, device, operations)
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.bert.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.bert.embeddings.word_embeddings = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.bert(*args, **kwargs)
|
||||
72
comfy/text_encoders/flux.py
Normal file
72
comfy/text_encoders/flux.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.model_management
|
||||
from transformers import T5TokenizerFast
|
||||
import torch
|
||||
import os
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
|
||||
class FluxTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_l.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {}
|
||||
|
||||
|
||||
class FluxClipModel(torch.nn.Module):
|
||||
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
|
||||
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
|
||||
self.dtypes = set([dtype, dtype_t5])
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.clip_l.set_clip_options(options)
|
||||
self.t5xxl.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.clip_l.reset_clip_options()
|
||||
self.t5xxl.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
|
||||
|
||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return t5_out, l_pooled
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
else:
|
||||
return self.t5xxl.load_sd(sd)
|
||||
|
||||
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class FluxClipModel_(FluxClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
|
||||
return FluxClipModel_
|
||||
38
comfy/text_encoders/genmo.py
Normal file
38
comfy/text_encoders/genmo.py
Normal file
@@ -0,0 +1,38 @@
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import os
|
||||
from transformers import T5TokenizerFast
|
||||
|
||||
|
||||
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||||
def __init__(self, **kwargs):
|
||||
kwargs["attention_mask"] = True
|
||||
super().__init__(**kwargs)
|
||||
|
||||
|
||||
class MochiT5XXL(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||||
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
|
||||
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
|
||||
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class MochiTEModel_(MochiT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return MochiTEModel_
|
||||
79
comfy/text_encoders/hydit.py
Normal file
79
comfy/text_encoders/hydit.py
Normal file
@@ -0,0 +1,79 @@
|
||||
from comfy import sd1_clip
|
||||
from transformers import BertTokenizer
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
from .bert import BertModel
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
import torch
|
||||
|
||||
class HyditBertModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
|
||||
|
||||
|
||||
class MT5XLModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
|
||||
|
||||
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
class HyditTokenizer:
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
|
||||
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
|
||||
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
|
||||
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.hydit_clip.untokenize(token_weight_pair)
|
||||
|
||||
def state_dict(self):
|
||||
return {"mt5xl.spiece_model": self.mt5xl.state_dict()["spiece_model"]}
|
||||
|
||||
class HyditModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__()
|
||||
self.hydit_clip = HyditBertModel(dtype=dtype, model_options=model_options)
|
||||
self.mt5xl = MT5XLModel(dtype=dtype, model_options=model_options)
|
||||
|
||||
self.dtypes = set()
|
||||
if dtype is not None:
|
||||
self.dtypes.add(dtype)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
hydit_out = self.hydit_clip.encode_token_weights(token_weight_pairs["hydit_clip"])
|
||||
mt5_out = self.mt5xl.encode_token_weights(token_weight_pairs["mt5xl"])
|
||||
return hydit_out[0], hydit_out[1], {"attention_mask": hydit_out[2]["attention_mask"], "conditioning_mt5xl": mt5_out[0], "attention_mask_mt5xl": mt5_out[2]["attention_mask"]}
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "bert.encoder.layer.0.attention.self.query.weight" in sd:
|
||||
return self.hydit_clip.load_sd(sd)
|
||||
else:
|
||||
return self.mt5xl.load_sd(sd)
|
||||
|
||||
def set_clip_options(self, options):
|
||||
self.hydit_clip.set_clip_options(options)
|
||||
self.mt5xl.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
self.hydit_clip.reset_clip_options()
|
||||
self.mt5xl.reset_clip_options()
|
||||
35
comfy/text_encoders/hydit_clip.json
Normal file
35
comfy/text_encoders/hydit_clip.json
Normal file
@@ -0,0 +1,35 @@
|
||||
{
|
||||
"_name_or_path": "hfl/chinese-roberta-wwm-ext-large",
|
||||
"architectures": [
|
||||
"BertModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"classifier_dropout": null,
|
||||
"directionality": "bidi",
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 1024,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-12,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "bert",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"pooler_fc_size": 768,
|
||||
"pooler_num_attention_heads": 12,
|
||||
"pooler_num_fc_layers": 3,
|
||||
"pooler_size_per_head": 128,
|
||||
"pooler_type": "first_token_transform",
|
||||
"position_embedding_type": "absolute",
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.22.1",
|
||||
"type_vocab_size": 2,
|
||||
"use_cache": true,
|
||||
"vocab_size": 47020
|
||||
}
|
||||
|
||||
@@ -0,0 +1,7 @@
|
||||
{
|
||||
"cls_token": "[CLS]",
|
||||
"mask_token": "[MASK]",
|
||||
"pad_token": "[PAD]",
|
||||
"sep_token": "[SEP]",
|
||||
"unk_token": "[UNK]"
|
||||
}
|
||||
@@ -0,0 +1,16 @@
|
||||
{
|
||||
"cls_token": "[CLS]",
|
||||
"do_basic_tokenize": true,
|
||||
"do_lower_case": true,
|
||||
"mask_token": "[MASK]",
|
||||
"name_or_path": "hfl/chinese-roberta-wwm-ext",
|
||||
"never_split": null,
|
||||
"pad_token": "[PAD]",
|
||||
"sep_token": "[SEP]",
|
||||
"special_tokens_map_file": "/home/chenweifeng/.cache/huggingface/hub/models--hfl--chinese-roberta-wwm-ext/snapshots/5c58d0b8ec1d9014354d691c538661bf00bfdb44/special_tokens_map.json",
|
||||
"strip_accents": null,
|
||||
"tokenize_chinese_chars": true,
|
||||
"tokenizer_class": "BertTokenizer",
|
||||
"unk_token": "[UNK]",
|
||||
"model_max_length": 77
|
||||
}
|
||||
47020
comfy/text_encoders/hydit_clip_tokenizer/vocab.txt
Normal file
47020
comfy/text_encoders/hydit_clip_tokenizer/vocab.txt
Normal file
File diff suppressed because it is too large
Load Diff
25
comfy/text_encoders/long_clipl.json
Normal file
25
comfy/text_encoders/long_clipl.json
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 49407,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 248,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.24.0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
30
comfy/text_encoders/long_clipl.py
Normal file
30
comfy/text_encoders/long_clipl.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from comfy import sd1_clip
|
||||
import os
|
||||
|
||||
class LongClipTokenizer_(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
class LongClipModel_(sd1_clip.SDClipModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
|
||||
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
|
||||
|
||||
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
|
||||
|
||||
class LongClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
|
||||
|
||||
def model_options_long_clip(sd, tokenizer_data, model_options):
|
||||
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
|
||||
if w is None:
|
||||
w = sd.get("text_model.embeddings.position_embedding.weight", None)
|
||||
if w is not None and w.shape[0] == 248:
|
||||
tokenizer_data = tokenizer_data.copy()
|
||||
model_options = model_options.copy()
|
||||
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
|
||||
model_options["clip_l_class"] = LongClipModel_
|
||||
return tokenizer_data, model_options
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user