sync with repo 28.08

This commit is contained in:
2024-08-28 19:33:34 +03:00
parent 727693318c
commit ad1e3ecbcb
134 changed files with 112534 additions and 12635 deletions

View File

@@ -24,6 +24,7 @@ import comfy.text_encoders.sa_t5
import comfy.text_encoders.aura_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.long_clipl
import comfy.model_patcher
import comfy.lora
@@ -62,7 +63,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}):
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
if no_init:
return
params = target.params.copy()
@@ -71,20 +72,29 @@ class CLIP:
load_device = model_management.text_encoder_device()
offload_device = model_management.text_encoder_offload_device()
params['device'] = offload_device
dtype = model_management.text_encoder_dtype(load_device)
dtype = model_options.get("dtype", None)
if dtype is None:
dtype = model_management.text_encoder_dtype(load_device)
params['dtype'] = dtype
params['device'] = model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype))
params['model_options'] = model_options
self.cond_stage_model = clip(**(params))
for dt in self.cond_stage_model.dtypes:
if not model_management.supports_cast(load_device, dt):
load_device = offload_device
if params['device'] != offload_device:
self.cond_stage_model.to(offload_device)
logging.warning("Had to shift TE back.")
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
if params['device'] == load_device:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device))
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
def clone(self):
n = CLIP(no_init=True)
@@ -390,11 +400,14 @@ class CLIPType(Enum):
HUNYUAN_DIT = 5
FLUX = 6
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION):
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
for p in ckpt_paths:
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = state_dicts
class EmptyClass:
pass
@@ -431,8 +444,13 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
w = clip_data[0].get("text_model.embeddings.position_embedding.weight", None)
if w is not None and w.shape[0] == 248:
clip_target.clip = comfy.text_encoders.long_clipl.LongClipModel
clip_target.tokenizer = comfy.text_encoders.long_clipl.LongClipTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
elif len(clip_data) == 2:
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
@@ -456,7 +474,11 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
clip = CLIP(clip_target, embedding_directory=embedding_directory)
parameters = 0
for c in clip_data:
parameters += comfy.utils.calculate_parameters(c)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, model_options=model_options)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
@@ -498,25 +520,39 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (model, clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
sd = comfy.utils.load_torch_file(ckpt_path)
sd_keys = sd.keys()
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options)
if out is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return out
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}):
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
return None
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if weight_dtype is not None:
unet_weight_dtype.append(weight_dtype)
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("weight_dtype", None)
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
@@ -540,7 +576,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd)
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
@@ -559,15 +596,16 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
model_management.load_models_gpu([model_patcher], force_full_load=True)
return (model_patcher, clip, vae, clipvision)
def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular format
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
dtype = model_options.get("dtype", None)
#Allow loading unets from checkpoint files
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
@@ -609,6 +647,7 @@ def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular for
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", None)
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
@@ -617,24 +656,36 @@ def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular for
logging.info("left over keys in unet: {}".format(left_over))
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
def load_unet(unet_path, dtype=None):
def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_unet_state_dict(sd, dtype=dtype)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model
def load_unet(unet_path, dtype=None):
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
def load_unet_state_dict(sd, dtype=None):
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
clip_sd = None
load_models = [model]
if clip is not None:
load_models.append(clip.load_model())
clip_sd = clip.get_sd()
vae_sd = None
if vae is not None:
vae_sd = vae.get_sd()
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
for k in extra_keys:
sd[k] = extra_keys[k]