sync with repo 28.08

This commit is contained in:
2024-08-28 19:33:34 +03:00
parent 727693318c
commit ad1e3ecbcb
134 changed files with 112534 additions and 12635 deletions

View File

@@ -0,0 +1,4 @@
# Config for testing nodes
testing:
custom_nodes: tests/inference/testing_nodes

View File

@@ -0,0 +1,499 @@
from io import BytesIO
import numpy
from PIL import Image
import pytest
from pytest import fixture
import time
import torch
from typing import Union, Dict
import json
import subprocess
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import urllib.request
import urllib.parse
import urllib.error
from comfy_execution.graph_utils import GraphBuilder, Node
class RunResult:
def __init__(self, prompt_id: str):
self.outputs: Dict[str,Dict] = {}
self.runs: Dict[str,bool] = {}
self.prompt_id: str = prompt_id
def get_output(self, node: Node):
return self.outputs.get(node.id, None)
def did_run(self, node: Node):
return self.runs.get(node.id, False)
def get_images(self, node: Node):
output = self.get_output(node)
if output is None:
return []
return output.get('image_objects', [])
def get_prompt_id(self):
return self.prompt_id
class ComfyClient:
def __init__(self):
self.test_name = ""
def connect(self,
listen:str = '127.0.0.1',
port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4())
):
self.client_id = client_id
self.server_address = f"{listen}:{port}"
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
self.ws = ws
def queue_prompt(self, prompt):
p = {"prompt": prompt, "client_id": self.client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(self, filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
return response.read()
def get_history(self, prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
return json.loads(response.read())
def set_test_name(self, name):
self.test_name = name
def run(self, graph):
prompt = graph.finalize()
for node in graph.nodes.values():
if node.class_type == 'SaveImage':
node.inputs['filename_prefix'] = self.test_name
prompt_id = self.queue_prompt(prompt)['prompt_id']
result = RunResult(prompt_id)
while True:
out = self.ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['prompt_id'] != prompt_id:
continue
if data['node'] is None:
break
result.runs[data['node']] = True
elif message['type'] == 'execution_error':
raise Exception(message['data'])
elif message['type'] == 'execution_cached':
pass # Probably want to store this off for testing
history = self.get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
result.outputs[node_id] = node_output
if 'images' in node_output:
images_output = []
for image in node_output['images']:
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
image_obj = Image.open(BytesIO(image_data))
images_output.append(image_obj)
node_output['image_objects'] = images_output
return result
#
# Loop through these variables
#
@pytest.mark.execution
class TestExecution:
#
# Initialize server and client
#
@fixture(scope="class", autouse=True, params=[
# (use_lru, lru_size)
(False, 0),
(True, 0),
(True, 100),
])
def _server(self, args_pytest, request):
# Start server
pargs = [
'python','main.py',
'--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]),
'--extra-model-paths-config', 'tests/inference/extra_model_paths.yaml',
]
use_lru, lru_size = request.param
if use_lru:
pargs += ['--cache-lru', str(lru_size)]
print("Running server with args:", pargs)
p = subprocess.Popen(pargs)
yield
p.kill()
torch.cuda.empty_cache()
def start_client(self, listen:str, port:int):
# Start client
comfy_client = ComfyClient()
# Connect to server (with retries)
n_tries = 5
for i in range(n_tries):
time.sleep(4)
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
else:
break
return comfy_client
@fixture(scope="class", autouse=True)
def shared_client(self, args_pytest, _server):
client = self.start_client(args_pytest["listen"], args_pytest["port"])
yield client
del client
torch.cuda.empty_cache()
@fixture
def client(self, shared_client, request):
shared_client.set_test_name(f"execution[{request.node.name}]")
yield shared_client
@fixture
def builder(self, request):
yield GraphBuilder(prefix=request.node.name)
def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
output = g.node("SaveImage", images=lazy_mix.out(0))
result = client.run(g)
result_image = result.get_images(output)[0]
assert numpy.array(result_image).any() == 0, "Image should be black"
assert result.did_run(input1)
assert not result.did_run(input2)
assert result.did_run(mask)
assert result.did_run(lazy_mix)
def test_full_cache(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
client.run(g)
result2 = client.run(g)
for node_id, node in g.nodes.items():
assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached"
def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
client.run(g)
mask.inputs['value'] = 0.4
result2 = client.run(g)
assert not result2.did_run(input1), "Input1 should have been cached"
assert not result2.did_run(input2), "Input2 should have been cached"
def test_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
# Different size of the two images
input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
try:
client.run(g)
assert False, "Should have raised an error"
except Exception as e:
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
@pytest.mark.parametrize("test_value, expect_error", [
(5, True),
("foo", True),
(5.0, False),
])
def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0)
g.node("SaveImage", images=validation1.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value", [
("StubInt", 5),
("StubFloat", 5.0)
])
def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation1.out(0))
with pytest.raises(urllib.error.HTTPError):
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation2.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation3.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation4.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_value1, test_value2, expect_error", [
(0.0, 0.5, False),
(0.0, 5.0, False),
(0.0, 7.0, True)
])
def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2)
g.node("SaveImage", images=validation5.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0))
lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix2.out(0))
# When the cycle exists on initial submission, it should raise a validation error
with pytest.raises(urllib.error.HTTPError):
client.run(g)
def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0))
g.node("SaveImage", images=generator.out(0))
# When the cycle is in a graph that is generated dynamically, it should raise a runtime error
try:
client.run(g)
assert False, "Should have raised an error"
except Exception as e:
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node"
def test_missing_node_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
input3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
mix2 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input3.out(0), mask=mask.out(0))
# We have multiple outputs. The first is invalid, but the second is valid
g.node("SaveImage", images=mix1.out(0))
g.node("SaveImage", images=mix2.out(0))
g.remove_node("removeme")
client.run(g)
# Add back in the missing node to make sure the error doesn't break the server
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
client.run(g)
def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder):
g = builder
# Creating the nodes in this specific order previously caused a bug
save = g.node("SaveImage")
is_changed = g.node("TestCustomIsChanged", should_change=False)
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
save.set_input('images', is_changed.out(0))
is_changed.set_input('image', input1.out(0))
result1 = client.run(g)
result2 = client.run(g)
is_changed.set_input('should_change', True)
result3 = client.run(g)
result4 = client.run(g)
assert result1.did_run(is_changed), "is_changed should have been run"
assert not result2.did_run(is_changed), "is_changed should have been cached"
assert result3.did_run(is_changed), "is_changed should have been re-run"
assert result4.did_run(is_changed), "is_changed should not have been cached"
def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0))
output = g.node("SaveImage", images=average.out(0))
result = client.run(g)
result_image = result.get_images(output)[0]
expected = 255 // 4
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
def test_for_loop(self, client: ComfyClient, builder: GraphBuilder):
g = builder
iterations = 4
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0))
for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0))
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2))
for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0))
output = g.node("SaveImage", images=for_close.out(0))
for iterations in range(1, 5):
for_open.set_input('remaining', iterations)
result = client.run(g)
result_image = result.get_images(output)[0]
expected = 255 // (2 ** iterations)
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
assert result.did_run(is_changed)
def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder):
g = builder
val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3)
mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0))
output_dynamic = g.node("SaveImage", images=mixed.out(0))
output_literal = g.node("SaveImage", images=mixed.out(1))
result = client.run(g)
images_dynamic = result.get_images(output_dynamic)
assert len(images_dynamic) == 3, "Should have 2 images"
assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1"
assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2"
assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3"
images_literal = result.get_images(output_literal)
assert len(images_literal) == 3, "Should have 2 images"
for i in range(3):
assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white"
def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder):
g = builder
val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0)
mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1)
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3)
output = g.node("SaveImage", images=rebatch.out(0))
result = client.run(g)
images = result.get_images(output)
assert len(images) == 3, "Should have 3 image"
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0"
assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5"
assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0"
def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
output1 = g.node("SaveImage", images=input1.out(0))
output2 = g.node("SaveImage", images=input1.out(0))
result = client.run(g)
images1 = result.get_images(output1)
images2 = result.get_images(output2)
assert len(images1) == 1, "Should have 1 image"
assert len(images2) == 1, "Should have 1 image"
# This tests that only constant outputs are used in the call to `IS_CHANGED`
def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1)
test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5)
output = g.node("PreviewImage", images=test_node.out(0))
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
assert not result.did_run(test_node), "The execution should have been cached"

View File

@@ -0,0 +1,23 @@
from .specific_tests import TEST_NODE_CLASS_MAPPINGS, TEST_NODE_DISPLAY_NAME_MAPPINGS
from .flow_control import FLOW_CONTROL_NODE_CLASS_MAPPINGS, FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS
from .util import UTILITY_NODE_CLASS_MAPPINGS, UTILITY_NODE_DISPLAY_NAME_MAPPINGS
from .conditions import CONDITION_NODE_CLASS_MAPPINGS, CONDITION_NODE_DISPLAY_NAME_MAPPINGS
from .stubs import TEST_STUB_NODE_CLASS_MAPPINGS, TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS
# NODE_CLASS_MAPPINGS = GENERAL_NODE_CLASS_MAPPINGS.update(COMPONENT_NODE_CLASS_MAPPINGS)
# NODE_DISPLAY_NAME_MAPPINGS = GENERAL_NODE_DISPLAY_NAME_MAPPINGS.update(COMPONENT_NODE_DISPLAY_NAME_MAPPINGS)
NODE_CLASS_MAPPINGS = {}
NODE_CLASS_MAPPINGS.update(TEST_NODE_CLASS_MAPPINGS)
NODE_CLASS_MAPPINGS.update(FLOW_CONTROL_NODE_CLASS_MAPPINGS)
NODE_CLASS_MAPPINGS.update(UTILITY_NODE_CLASS_MAPPINGS)
NODE_CLASS_MAPPINGS.update(CONDITION_NODE_CLASS_MAPPINGS)
NODE_CLASS_MAPPINGS.update(TEST_STUB_NODE_CLASS_MAPPINGS)
NODE_DISPLAY_NAME_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS.update(TEST_NODE_DISPLAY_NAME_MAPPINGS)
NODE_DISPLAY_NAME_MAPPINGS.update(FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS)
NODE_DISPLAY_NAME_MAPPINGS.update(UTILITY_NODE_DISPLAY_NAME_MAPPINGS)
NODE_DISPLAY_NAME_MAPPINGS.update(CONDITION_NODE_DISPLAY_NAME_MAPPINGS)
NODE_DISPLAY_NAME_MAPPINGS.update(TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS)

View File

@@ -0,0 +1,194 @@
import re
import torch
class TestIntConditions:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"operation": (["==", "!=", "<", ">", "<=", ">="],),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "int_condition"
CATEGORY = "Testing/Logic"
def int_condition(self, a, b, operation):
if operation == "==":
return (a == b,)
elif operation == "!=":
return (a != b,)
elif operation == "<":
return (a < b,)
elif operation == ">":
return (a > b,)
elif operation == "<=":
return (a <= b,)
elif operation == ">=":
return (a >= b,)
class TestFloatConditions:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 1}),
"b": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 1}),
"operation": (["==", "!=", "<", ">", "<=", ">="],),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "float_condition"
CATEGORY = "Testing/Logic"
def float_condition(self, a, b, operation):
if operation == "==":
return (a == b,)
elif operation == "!=":
return (a != b,)
elif operation == "<":
return (a < b,)
elif operation == ">":
return (a > b,)
elif operation == "<=":
return (a <= b,)
elif operation == ">=":
return (a >= b,)
class TestStringConditions:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("STRING", {"multiline": False}),
"b": ("STRING", {"multiline": False}),
"operation": (["a == b", "a != b", "a IN b", "a MATCH REGEX(b)", "a BEGINSWITH b", "a ENDSWITH b"],),
"case_sensitive": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "string_condition"
CATEGORY = "Testing/Logic"
def string_condition(self, a, b, operation, case_sensitive):
if not case_sensitive:
a = a.lower()
b = b.lower()
if operation == "a == b":
return (a == b,)
elif operation == "a != b":
return (a != b,)
elif operation == "a IN b":
return (a in b,)
elif operation == "a MATCH REGEX(b)":
try:
return (re.match(b, a) is not None,)
except:
return (False,)
elif operation == "a BEGINSWITH b":
return (a.startswith(b),)
elif operation == "a ENDSWITH b":
return (a.endswith(b),)
class TestToBoolNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("*",),
},
"optional": {
"invert": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "to_bool"
CATEGORY = "Testing/Logic"
def to_bool(self, value, invert = False):
if isinstance(value, torch.Tensor):
if value.max().item() == 0 and value.min().item() == 0:
result = False
else:
result = True
else:
try:
result = bool(value)
except:
# Can't convert it? Well then it's something or other. I dunno, I'm not a Python programmer.
result = True
if invert:
result = not result
return (result,)
class TestBoolOperationNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("BOOLEAN",),
"b": ("BOOLEAN",),
"op": (["a AND b", "a OR b", "a XOR b", "NOT a"],),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "bool_operation"
CATEGORY = "Testing/Logic"
def bool_operation(self, a, b, op):
if op == "a AND b":
return (a and b,)
elif op == "a OR b":
return (a or b,)
elif op == "a XOR b":
return (a ^ b,)
elif op == "NOT a":
return (not a,)
CONDITION_NODE_CLASS_MAPPINGS = {
"TestIntConditions": TestIntConditions,
"TestFloatConditions": TestFloatConditions,
"TestStringConditions": TestStringConditions,
"TestToBoolNode": TestToBoolNode,
"TestBoolOperationNode": TestBoolOperationNode,
}
CONDITION_NODE_DISPLAY_NAME_MAPPINGS = {
"TestIntConditions": "Int Condition",
"TestFloatConditions": "Float Condition",
"TestStringConditions": "String Condition",
"TestToBoolNode": "To Bool",
"TestBoolOperationNode": "Bool Operation",
}

View File

@@ -0,0 +1,173 @@
from comfy_execution.graph_utils import GraphBuilder, is_link
from comfy_execution.graph import ExecutionBlocker
from .tools import VariantSupport
NUM_FLOW_SOCKETS = 5
@VariantSupport()
class TestWhileLoopOpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"condition": ("BOOLEAN", {"default": True}),
},
"optional": {
},
}
for i in range(NUM_FLOW_SOCKETS):
inputs["optional"][f"initial_value{i}"] = ("*",)
return inputs
RETURN_TYPES = tuple(["FLOW_CONTROL"] + ["*"] * NUM_FLOW_SOCKETS)
RETURN_NAMES = tuple(["FLOW_CONTROL"] + [f"value{i}" for i in range(NUM_FLOW_SOCKETS)])
FUNCTION = "while_loop_open"
CATEGORY = "Testing/Flow"
def while_loop_open(self, condition, **kwargs):
values = []
for i in range(NUM_FLOW_SOCKETS):
values.append(kwargs.get(f"initial_value{i}", None))
return tuple(["stub"] + values)
@VariantSupport()
class TestWhileLoopClose:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"flow_control": ("FLOW_CONTROL", {"rawLink": True}),
"condition": ("BOOLEAN", {"forceInput": True}),
},
"optional": {
},
"hidden": {
"dynprompt": "DYNPROMPT",
"unique_id": "UNIQUE_ID",
}
}
for i in range(NUM_FLOW_SOCKETS):
inputs["optional"][f"initial_value{i}"] = ("*",)
return inputs
RETURN_TYPES = tuple(["*"] * NUM_FLOW_SOCKETS)
RETURN_NAMES = tuple([f"value{i}" for i in range(NUM_FLOW_SOCKETS)])
FUNCTION = "while_loop_close"
CATEGORY = "Testing/Flow"
def explore_dependencies(self, node_id, dynprompt, upstream):
node_info = dynprompt.get_node(node_id)
if "inputs" not in node_info:
return
for k, v in node_info["inputs"].items():
if is_link(v):
parent_id = v[0]
if parent_id not in upstream:
upstream[parent_id] = []
self.explore_dependencies(parent_id, dynprompt, upstream)
upstream[parent_id].append(node_id)
def collect_contained(self, node_id, upstream, contained):
if node_id not in upstream:
return
for child_id in upstream[node_id]:
if child_id not in contained:
contained[child_id] = True
self.collect_contained(child_id, upstream, contained)
def while_loop_close(self, flow_control, condition, dynprompt=None, unique_id=None, **kwargs):
assert dynprompt is not None
if not condition:
# We're done with the loop
values = []
for i in range(NUM_FLOW_SOCKETS):
values.append(kwargs.get(f"initial_value{i}", None))
return tuple(values)
# We want to loop
upstream = {}
# Get the list of all nodes between the open and close nodes
self.explore_dependencies(unique_id, dynprompt, upstream)
contained = {}
open_node = flow_control[0]
self.collect_contained(open_node, upstream, contained)
contained[unique_id] = True
contained[open_node] = True
# We'll use the default prefix, but to avoid having node names grow exponentially in size,
# we'll use "Recurse" for the name of the recursively-generated copy of this node.
graph = GraphBuilder()
for node_id in contained:
original_node = dynprompt.get_node(node_id)
node = graph.node(original_node["class_type"], "Recurse" if node_id == unique_id else node_id)
node.set_override_display_id(node_id)
for node_id in contained:
original_node = dynprompt.get_node(node_id)
node = graph.lookup_node("Recurse" if node_id == unique_id else node_id)
assert node is not None
for k, v in original_node["inputs"].items():
if is_link(v) and v[0] in contained:
parent = graph.lookup_node(v[0])
assert parent is not None
node.set_input(k, parent.out(v[1]))
else:
node.set_input(k, v)
new_open = graph.lookup_node(open_node)
assert new_open is not None
for i in range(NUM_FLOW_SOCKETS):
key = f"initial_value{i}"
new_open.set_input(key, kwargs.get(key, None))
my_clone = graph.lookup_node("Recurse")
assert my_clone is not None
result = map(lambda x: my_clone.out(x), range(NUM_FLOW_SOCKETS))
return {
"result": tuple(result),
"expand": graph.finalize(),
}
@VariantSupport()
class TestExecutionBlockerNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"input": ("*",),
"block": ("BOOLEAN",),
"verbose": ("BOOLEAN", {"default": False}),
},
}
return inputs
RETURN_TYPES = ("*",)
RETURN_NAMES = ("output",)
FUNCTION = "execution_blocker"
CATEGORY = "Testing/Flow"
def execution_blocker(self, input, block, verbose):
if block:
return (ExecutionBlocker("Blocked Execution" if verbose else None),)
return (input,)
FLOW_CONTROL_NODE_CLASS_MAPPINGS = {
"TestWhileLoopOpen": TestWhileLoopOpen,
"TestWhileLoopClose": TestWhileLoopClose,
"TestExecutionBlocker": TestExecutionBlockerNode,
}
FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS = {
"TestWhileLoopOpen": "While Loop Open",
"TestWhileLoopClose": "While Loop Close",
"TestExecutionBlocker": "Execution Blocker",
}

View File

@@ -0,0 +1,362 @@
import torch
from .tools import VariantSupport
from comfy_execution.graph_utils import GraphBuilder
class TestLazyMixImages:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image1": ("IMAGE",{"lazy": True}),
"image2": ("IMAGE",{"lazy": True}),
"mask": ("MASK",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "mix"
CATEGORY = "Testing/Nodes"
def check_lazy_status(self, mask, image1, image2):
mask_min = mask.min()
mask_max = mask.max()
needed = []
if image1 is None and (mask_min != 1.0 or mask_max != 1.0):
needed.append("image1")
if image2 is None and (mask_min != 0.0 or mask_max != 0.0):
needed.append("image2")
return needed
# Not trying to handle different batch sizes here just to keep the demo simple
def mix(self, mask, image1, image2):
mask_min = mask.min()
mask_max = mask.max()
if mask_min == 0.0 and mask_max == 0.0:
return (image1,)
elif mask_min == 1.0 and mask_max == 1.0:
return (image2,)
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if len(mask.shape) == 3:
mask = mask.unsqueeze(3)
if mask.shape[3] < image1.shape[3]:
mask = mask.repeat(1, 1, 1, image1.shape[3])
result = image1 * (1. - mask) + image2 * mask,
return (result[0],)
class TestVariadicAverage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "variadic_average"
CATEGORY = "Testing/Nodes"
def variadic_average(self, input1, **kwargs):
inputs = [input1]
while 'input' + str(len(inputs) + 1) in kwargs:
inputs.append(kwargs['input' + str(len(inputs) + 1)])
return (torch.stack(inputs).mean(dim=0),)
class TestCustomIsChanged:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
},
"optional": {
"should_change": ("BOOL", {"default": False}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_is_changed"
CATEGORY = "Testing/Nodes"
def custom_is_changed(self, image, should_change=False):
return (image,)
@classmethod
def IS_CHANGED(cls, should_change=False, *args, **kwargs):
if should_change:
return float("NaN")
else:
return False
class TestIsChangedWithConstants:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_is_changed"
CATEGORY = "Testing/Nodes"
def custom_is_changed(self, image, value):
return (image * value,)
@classmethod
def IS_CHANGED(cls, image, value):
if image is None:
return value
else:
return image.mean().item() * value
class TestCustomValidation1:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("IMAGE,FLOAT",),
"input2": ("IMAGE,FLOAT",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_validation1"
CATEGORY = "Testing/Nodes"
def custom_validation1(self, input1, input2):
if isinstance(input1, float) and isinstance(input2, float):
result = torch.ones([1, 512, 512, 3]) * input1 * input2
else:
result = input1 * input2
return (result,)
@classmethod
def VALIDATE_INPUTS(cls, input1=None, input2=None):
if input1 is not None:
if not isinstance(input1, (torch.Tensor, float)):
return f"Invalid type of input1: {type(input1)}"
if input2 is not None:
if not isinstance(input2, (torch.Tensor, float)):
return f"Invalid type of input2: {type(input2)}"
return True
class TestCustomValidation2:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("IMAGE,FLOAT",),
"input2": ("IMAGE,FLOAT",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_validation2"
CATEGORY = "Testing/Nodes"
def custom_validation2(self, input1, input2):
if isinstance(input1, float) and isinstance(input2, float):
result = torch.ones([1, 512, 512, 3]) * input1 * input2
else:
result = input1 * input2
return (result,)
@classmethod
def VALIDATE_INPUTS(cls, input_types, input1=None, input2=None):
if input1 is not None:
if not isinstance(input1, (torch.Tensor, float)):
return f"Invalid type of input1: {type(input1)}"
if input2 is not None:
if not isinstance(input2, (torch.Tensor, float)):
return f"Invalid type of input2: {type(input2)}"
if 'input1' in input_types:
if input_types['input1'] not in ["IMAGE", "FLOAT"]:
return f"Invalid type of input1: {input_types['input1']}"
if 'input2' in input_types:
if input_types['input2'] not in ["IMAGE", "FLOAT"]:
return f"Invalid type of input2: {input_types['input2']}"
return True
@VariantSupport()
class TestCustomValidation3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("IMAGE,FLOAT",),
"input2": ("IMAGE,FLOAT",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_validation3"
CATEGORY = "Testing/Nodes"
def custom_validation3(self, input1, input2):
if isinstance(input1, float) and isinstance(input2, float):
result = torch.ones([1, 512, 512, 3]) * input1 * input2
else:
result = input1 * input2
return (result,)
class TestCustomValidation4:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("FLOAT",),
"input2": ("FLOAT",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_validation4"
CATEGORY = "Testing/Nodes"
def custom_validation4(self, input1, input2):
result = torch.ones([1, 512, 512, 3]) * input1 * input2
return (result,)
@classmethod
def VALIDATE_INPUTS(cls, input1, input2):
if input1 is not None:
if not isinstance(input1, float):
return f"Invalid type of input1: {type(input1)}"
if input2 is not None:
if not isinstance(input2, float):
return f"Invalid type of input2: {type(input2)}"
return True
class TestCustomValidation5:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("FLOAT", {"min": 0.0, "max": 1.0}),
"input2": ("FLOAT", {"min": 0.0, "max": 1.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_validation5"
CATEGORY = "Testing/Nodes"
def custom_validation5(self, input1, input2):
value = input1 * input2
return (torch.ones([1, 512, 512, 3]) * value,)
@classmethod
def VALIDATE_INPUTS(cls, **kwargs):
if kwargs['input2'] == 7.0:
return "7s are not allowed. I've never liked 7s."
return True
class TestDynamicDependencyCycle:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("IMAGE",),
"input2": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "dynamic_dependency_cycle"
CATEGORY = "Testing/Nodes"
def dynamic_dependency_cycle(self, input1, input2):
g = GraphBuilder()
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
mix1 = g.node("TestLazyMixImages", image1=input1, mask=mask.out(0))
mix2 = g.node("TestLazyMixImages", image1=mix1.out(0), image2=input2, mask=mask.out(0))
# Create the cyle
mix1.set_input("image2", mix2.out(0))
return {
"result": (mix2.out(0),),
"expand": g.finalize(),
}
class TestMixedExpansionReturns:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"input1": ("FLOAT",),
},
}
RETURN_TYPES = ("IMAGE","IMAGE")
FUNCTION = "mixed_expansion_returns"
CATEGORY = "Testing/Nodes"
def mixed_expansion_returns(self, input1):
white_image = torch.ones([1, 512, 512, 3])
if input1 <= 0.1:
return (torch.ones([1, 512, 512, 3]) * 0.1, white_image)
elif input1 <= 0.2:
return {
"result": (torch.ones([1, 512, 512, 3]) * 0.2, white_image),
}
else:
g = GraphBuilder()
mask = g.node("StubMask", value=0.3, height=512, width=512, batch_size=1)
black = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
white = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mix = g.node("TestLazyMixImages", image1=black.out(0), image2=white.out(0), mask=mask.out(0))
return {
"result": (mix.out(0), white_image),
"expand": g.finalize(),
}
TEST_NODE_CLASS_MAPPINGS = {
"TestLazyMixImages": TestLazyMixImages,
"TestVariadicAverage": TestVariadicAverage,
"TestCustomIsChanged": TestCustomIsChanged,
"TestIsChangedWithConstants": TestIsChangedWithConstants,
"TestCustomValidation1": TestCustomValidation1,
"TestCustomValidation2": TestCustomValidation2,
"TestCustomValidation3": TestCustomValidation3,
"TestCustomValidation4": TestCustomValidation4,
"TestCustomValidation5": TestCustomValidation5,
"TestDynamicDependencyCycle": TestDynamicDependencyCycle,
"TestMixedExpansionReturns": TestMixedExpansionReturns,
}
TEST_NODE_DISPLAY_NAME_MAPPINGS = {
"TestLazyMixImages": "Lazy Mix Images",
"TestVariadicAverage": "Variadic Average",
"TestCustomIsChanged": "Custom IsChanged",
"TestIsChangedWithConstants": "IsChanged With Constants",
"TestCustomValidation1": "Custom Validation 1",
"TestCustomValidation2": "Custom Validation 2",
"TestCustomValidation3": "Custom Validation 3",
"TestCustomValidation4": "Custom Validation 4",
"TestCustomValidation5": "Custom Validation 5",
"TestDynamicDependencyCycle": "Dynamic Dependency Cycle",
"TestMixedExpansionReturns": "Mixed Expansion Returns",
}

View File

@@ -0,0 +1,129 @@
import torch
class StubImage:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"content": (['WHITE', 'BLACK', 'NOISE'],),
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stub_image"
CATEGORY = "Testing/Stub Nodes"
def stub_image(self, content, height, width, batch_size):
if content == "WHITE":
return (torch.ones(batch_size, height, width, 3),)
elif content == "BLACK":
return (torch.zeros(batch_size, height, width, 3),)
elif content == "NOISE":
return (torch.rand(batch_size, height, width, 3),)
class StubConstantImage:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stub_constant_image"
CATEGORY = "Testing/Stub Nodes"
def stub_constant_image(self, value, height, width, batch_size):
return (torch.ones(batch_size, height, width, 3) * value,)
class StubMask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "stub_mask"
CATEGORY = "Testing/Stub Nodes"
def stub_mask(self, value, height, width, batch_size):
return (torch.ones(batch_size, height, width) * value,)
class StubInt:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("INT", {"default": 0, "min": -0xffffffff, "max": 0xffffffff, "step": 1}),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "stub_int"
CATEGORY = "Testing/Stub Nodes"
def stub_int(self, value):
return (value,)
class StubFloat:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0.0, "min": -1.0e38, "max": 1.0e38, "step": 0.01}),
},
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "stub_float"
CATEGORY = "Testing/Stub Nodes"
def stub_float(self, value):
return (value,)
TEST_STUB_NODE_CLASS_MAPPINGS = {
"StubImage": StubImage,
"StubConstantImage": StubConstantImage,
"StubMask": StubMask,
"StubInt": StubInt,
"StubFloat": StubFloat,
}
TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = {
"StubImage": "Stub Image",
"StubConstantImage": "Stub Constant Image",
"StubMask": "Stub Mask",
"StubInt": "Stub Int",
"StubFloat": "Stub Float",
}

View File

@@ -0,0 +1,53 @@
def MakeSmartType(t):
if isinstance(t, str):
return SmartType(t)
return t
class SmartType(str):
def __ne__(self, other):
if self == "*" or other == "*":
return False
selfset = set(self.split(','))
otherset = set(other.split(','))
return not selfset.issubset(otherset)
def VariantSupport():
def decorator(cls):
if hasattr(cls, "INPUT_TYPES"):
old_input_types = getattr(cls, "INPUT_TYPES")
def new_input_types(*args, **kwargs):
types = old_input_types(*args, **kwargs)
for category in ["required", "optional"]:
if category not in types:
continue
for key, value in types[category].items():
if isinstance(value, tuple):
types[category][key] = (MakeSmartType(value[0]),) + value[1:]
return types
setattr(cls, "INPUT_TYPES", new_input_types)
if hasattr(cls, "RETURN_TYPES"):
old_return_types = cls.RETURN_TYPES
setattr(cls, "RETURN_TYPES", tuple(MakeSmartType(x) for x in old_return_types))
if hasattr(cls, "VALIDATE_INPUTS"):
# Reflection is used to determine what the function signature is, so we can't just change the function signature
raise NotImplementedError("VariantSupport does not support VALIDATE_INPUTS yet")
else:
def validate_inputs(input_types):
inputs = cls.INPUT_TYPES()
for key, value in input_types.items():
if isinstance(value, SmartType):
continue
if "required" in inputs and key in inputs["required"]:
expected_type = inputs["required"][key][0]
elif "optional" in inputs and key in inputs["optional"]:
expected_type = inputs["optional"][key][0]
else:
expected_type = None
if expected_type is not None and MakeSmartType(value) != expected_type:
return f"Invalid type of {key}: {value} (expected {expected_type})"
return True
setattr(cls, "VALIDATE_INPUTS", validate_inputs)
return cls
return decorator

View File

@@ -0,0 +1,364 @@
from comfy_execution.graph_utils import GraphBuilder
from .tools import VariantSupport
@VariantSupport()
class TestAccumulateNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"to_add": ("*",),
},
"optional": {
"accumulation": ("ACCUMULATION",),
},
}
RETURN_TYPES = ("ACCUMULATION",)
FUNCTION = "accumulate"
CATEGORY = "Testing/Lists"
def accumulate(self, to_add, accumulation = None):
if accumulation is None:
value = [to_add]
else:
value = accumulation["accum"] + [to_add]
return ({"accum": value},)
@VariantSupport()
class TestAccumulationHeadNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
},
}
RETURN_TYPES = ("ACCUMULATION", "*",)
FUNCTION = "accumulation_head"
CATEGORY = "Testing/Lists"
def accumulation_head(self, accumulation):
accum = accumulation["accum"]
if len(accum) == 0:
return (accumulation, None)
else:
return ({"accum": accum[1:]}, accum[0])
class TestAccumulationTailNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
},
}
RETURN_TYPES = ("ACCUMULATION", "*",)
FUNCTION = "accumulation_tail"
CATEGORY = "Testing/Lists"
def accumulation_tail(self, accumulation):
accum = accumulation["accum"]
if len(accum) == 0:
return (None, accumulation)
else:
return ({"accum": accum[:-1]}, accum[-1])
@VariantSupport()
class TestAccumulationToListNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
},
}
RETURN_TYPES = ("*",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "accumulation_to_list"
CATEGORY = "Testing/Lists"
def accumulation_to_list(self, accumulation):
return (accumulation["accum"],)
@VariantSupport()
class TestListToAccumulationNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"list": ("*",),
},
}
RETURN_TYPES = ("ACCUMULATION",)
INPUT_IS_LIST = (True,)
FUNCTION = "list_to_accumulation"
CATEGORY = "Testing/Lists"
def list_to_accumulation(self, list):
return ({"accum": list},)
@VariantSupport()
class TestAccumulationGetLengthNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "accumlength"
CATEGORY = "Testing/Lists"
def accumlength(self, accumulation):
return (len(accumulation['accum']),)
@VariantSupport()
class TestAccumulationGetItemNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
"index": ("INT", {"default":0, "step":1})
},
}
RETURN_TYPES = ("*",)
FUNCTION = "get_item"
CATEGORY = "Testing/Lists"
def get_item(self, accumulation, index):
return (accumulation['accum'][index],)
@VariantSupport()
class TestAccumulationSetItemNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"accumulation": ("ACCUMULATION",),
"index": ("INT", {"default":0, "step":1}),
"value": ("*",),
},
}
RETURN_TYPES = ("ACCUMULATION",)
FUNCTION = "set_item"
CATEGORY = "Testing/Lists"
def set_item(self, accumulation, index, value):
new_accum = accumulation['accum'][:]
new_accum[index] = value
return ({"accum": new_accum},)
class TestIntMathOperation:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "int_math_operation"
CATEGORY = "Testing/Logic"
def int_math_operation(self, a, b, operation):
if operation == "add":
return (a + b,)
elif operation == "subtract":
return (a - b,)
elif operation == "multiply":
return (a * b,)
elif operation == "divide":
return (a // b,)
elif operation == "modulo":
return (a % b,)
elif operation == "power":
return (a ** b,)
from .flow_control import NUM_FLOW_SOCKETS
@VariantSupport()
class TestForLoopOpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"remaining": ("INT", {"default": 1, "min": 0, "max": 100000, "step": 1}),
},
"optional": {
f"initial_value{i}": ("*",) for i in range(1, NUM_FLOW_SOCKETS)
},
"hidden": {
"initial_value0": ("*",)
}
}
RETURN_TYPES = tuple(["FLOW_CONTROL", "INT",] + ["*"] * (NUM_FLOW_SOCKETS-1))
RETURN_NAMES = tuple(["flow_control", "remaining"] + [f"value{i}" for i in range(1, NUM_FLOW_SOCKETS)])
FUNCTION = "for_loop_open"
CATEGORY = "Testing/Flow"
def for_loop_open(self, remaining, **kwargs):
graph = GraphBuilder()
if "initial_value0" in kwargs:
remaining = kwargs["initial_value0"]
while_open = graph.node("TestWhileLoopOpen", condition=remaining, initial_value0=remaining, **{(f"initial_value{i}"): kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)})
outputs = [kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)]
return {
"result": tuple(["stub", remaining] + outputs),
"expand": graph.finalize(),
}
@VariantSupport()
class TestForLoopClose:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"flow_control": ("FLOW_CONTROL", {"rawLink": True}),
},
"optional": {
f"initial_value{i}": ("*",{"rawLink": True}) for i in range(1, NUM_FLOW_SOCKETS)
},
}
RETURN_TYPES = tuple(["*"] * (NUM_FLOW_SOCKETS-1))
RETURN_NAMES = tuple([f"value{i}" for i in range(1, NUM_FLOW_SOCKETS)])
FUNCTION = "for_loop_close"
CATEGORY = "Testing/Flow"
def for_loop_close(self, flow_control, **kwargs):
graph = GraphBuilder()
while_open = flow_control[0]
sub = graph.node("TestIntMathOperation", operation="subtract", a=[while_open,1], b=1)
cond = graph.node("TestToBoolNode", value=sub.out(0))
input_values = {f"initial_value{i}": kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)}
while_close = graph.node("TestWhileLoopClose",
flow_control=flow_control,
condition=cond.out(0),
initial_value0=sub.out(0),
**input_values)
return {
"result": tuple([while_close.out(i) for i in range(1, NUM_FLOW_SOCKETS)]),
"expand": graph.finalize(),
}
NUM_LIST_SOCKETS = 10
@VariantSupport()
class TestMakeListNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value1": ("*",),
},
"optional": {
f"value{i}": ("*",) for i in range(1, NUM_LIST_SOCKETS)
},
}
RETURN_TYPES = ("*",)
FUNCTION = "make_list"
OUTPUT_IS_LIST = (True,)
CATEGORY = "Testing/Lists"
def make_list(self, **kwargs):
result = []
for i in range(NUM_LIST_SOCKETS):
if f"value{i}" in kwargs:
result.append(kwargs[f"value{i}"])
return (result,)
UTILITY_NODE_CLASS_MAPPINGS = {
"TestAccumulateNode": TestAccumulateNode,
"TestAccumulationHeadNode": TestAccumulationHeadNode,
"TestAccumulationTailNode": TestAccumulationTailNode,
"TestAccumulationToListNode": TestAccumulationToListNode,
"TestListToAccumulationNode": TestListToAccumulationNode,
"TestAccumulationGetLengthNode": TestAccumulationGetLengthNode,
"TestAccumulationGetItemNode": TestAccumulationGetItemNode,
"TestAccumulationSetItemNode": TestAccumulationSetItemNode,
"TestForLoopOpen": TestForLoopOpen,
"TestForLoopClose": TestForLoopClose,
"TestIntMathOperation": TestIntMathOperation,
"TestMakeListNode": TestMakeListNode,
}
UTILITY_NODE_DISPLAY_NAME_MAPPINGS = {
"TestAccumulateNode": "Accumulate",
"TestAccumulationHeadNode": "Accumulation Head",
"TestAccumulationTailNode": "Accumulation Tail",
"TestAccumulationToListNode": "Accumulation to List",
"TestListToAccumulationNode": "List to Accumulation",
"TestAccumulationGetLengthNode": "Accumulation Get Length",
"TestAccumulationGetItemNode": "Accumulation Get Item",
"TestAccumulationSetItemNode": "Accumulation Set Item",
"TestForLoopOpen": "For Loop Open",
"TestForLoopClose": "For Loop Close",
"TestIntMathOperation": "Int Math Operation",
"TestMakeListNode": "Make List",
}