first commit
This commit is contained in:
42
comfy_extras/nodes_differential_diffusion.py
Normal file
42
comfy_extras/nodes_differential_diffusion.py
Normal file
@@ -0,0 +1,42 @@
|
||||
# code adapted from https://github.com/exx8/differential-diffusion
|
||||
|
||||
import torch
|
||||
|
||||
class DifferentialDiffusion():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL", ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "apply"
|
||||
CATEGORY = "_for_testing"
|
||||
INIT = False
|
||||
|
||||
def apply(self, model):
|
||||
model = model.clone()
|
||||
model.set_model_denoise_mask_function(self.forward)
|
||||
return (model,)
|
||||
|
||||
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
|
||||
model = extra_options["model"]
|
||||
step_sigmas = extra_options["sigmas"]
|
||||
sigma_to = model.inner_model.model_sampling.sigma_min
|
||||
if step_sigmas[-1] > sigma_to:
|
||||
sigma_to = step_sigmas[-1]
|
||||
sigma_from = step_sigmas[0]
|
||||
|
||||
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
|
||||
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
|
||||
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
|
||||
|
||||
threshold = (current_ts - ts_to) / (ts_from - ts_to)
|
||||
|
||||
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"DifferentialDiffusion": DifferentialDiffusion,
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DifferentialDiffusion": "Differential Diffusion",
|
||||
}
|
||||
Reference in New Issue
Block a user